
1-1

1 . Introduction

VHDL is a language for describing digital electronic systems. It arose
out of the United States Government’s Very High Speed Integrated Circuits
(VHSIC) program, initiated in 1980. In the course of this program, it
became clear that there was a need for a standard language for describing
the structure and function of integrated circuits (ICs). Hence the VHSIC
Hardware Description Language (VHDL) was developed, and subsequently
adopted as a standard by the Institute of Electrical and Electronic
Engineers (IEEE) in the US.

VHDL is designed to fill a number of needs in the design process.
Firstly, it allows description of the structure of a design, that is how it is
decomposed into sub-designs, and how those sub-designs are
interconnected. Secondly, it allows the specification of the function of
designs using familiar programming language forms. Thirdly, as a
result, it allows a design to be simulated before being manufactured, so that
designers can quickly compare alternatives and test for correctness without
the delay and expense of hardware prototyping.

The purpose of this booklet is to give you a quick introduction to VHDL.
This is done by informally describing the facilities provided by the
language, and using examples to illustrate them. This booklet does not
fully describe every aspect of the language. For such fine details, you
should consult the IEEE Standard VHDL Language Reference Manual.
However, be warned: the standard is like a legal document, and is very
difficult to read unless you are already familiar with the language. This
booklet does cover enough of the language for substantial model writing. It
assumes you know how to write computer programs using a conventional
programming language such as Pascal, C or Ada.

The remaining chapters of this booklet describe the various aspects of
VHDL in a bottom-up manner. Chapter 2 describes the facilities of VHDL
which most resemble normal sequential programming languages. These
include data types, variables, expressions, sequential statements and
subprograms. Chapter 3 then examines the facilities for describing the
structure of a module and how it it decomposed into sub-modules.
Chapter 4 covers aspects of VHDL that integrate the programming
language features with a discrete event timing model to allow simulation of
behaviour. Chapter 5 is a key chapter that shows how all these facilities are
combined to form a complete model of a system. Then Chapter 6 is a pot-
pourri of more advanced features which you may find useful for modeling
more complex systems.

Throughout this booklet, the syntax of language features is presented in
Backus-Naur Form (BNF). The syntax specifications are drawn from the
IEEE VHDL Standard. Concrete examples are also given to illustrate the
language features. In some cases, some alternatives are omitted from BNF

1-2 The VHDL Cookbook

A

B
YF

A

B
YG

A

B
YH

A

B
YI

FA

B

Y

(a)

(b)

Figure 1-1. Example of a structural description.

productions where they are not directly relevant to the context. For this
reason, the full syntax is included in Appendix A, and should be consulted
as a reference.

1.1. Describing Structure
A digital electronic system can be described as a module with inputs

and/or outputs. The electrical values on the outputs are some function of
the values on the inputs. Figure 1-1(a) shows an example of this view of a
digital system. The module F has two inputs, A and B, and an output Y.
Using VHDL terminology, we call the module F a design entity, and the
inputs and outputs are called ports.

One way of describing the function of a module is to describe how it is
composed of sub-modules. Each of the sub-modules is an instance of some
entity, and the ports of the instances are connected using signals.
Figure 1-1(b) shows how the entity F might be composed of instances of
entities G, H and I. This kind of description is called a structural
description. Note that each of the entities G, H and I might also have a
structural description.

1.2. Describing Behaviour
In many cases, it is not appropriate to describe a module structurally.

One such case is a module which is at the bottom of the hierarchy of some
other structural description. For example, if you are designing a system
using IC packages bought from an IC shop, you do not need to describe the
internal structure of an IC. In such cases, a description of the function
performed by the module is required, without reference to its actual
internal structure. Such a description is called a functional or behavioural
description.

To illustrate this, suppose that the function of the entity F in
Figure 1-1(a) is the exclusive-or function. Then a behavioural description of
F could be the Boolean function

Y = A . B + A . B

More complex behaviours cannot be described purely as a function of
inputs. In systems with feedback, the outputs are also a function of time.
VHDL solves this problem by allowing description of behaviour in the form

1. Introduction 1-3

of an executable program. Chapters 2 and 4 describe the programming
language facilities.

1.3. Discrete Event Time Model
Once the structure and behaviour of a module have been specified, it is

possible to simulate the module by executing its bevioural description. This
is done by simulating the passage of time in discrete steps. At some
simulation time, a module input may be stimulated by changing the value
on an input port. The module reacts by running the code of its behavioural
description and scheduling new values to be placed on the signals
connected to its output ports at some later simulated time. This is called
scheduling a transaction on that signal. If the new value is different from
the previous value on the signal, an event occurs, and other modules with
input ports connected to the signal may be activated.

The simulation starts with an initialisation phase, and then proceeds by
repeating a two-stage simulation cycle. In the initialisation phase, all
signals are given initial values, the simulation time is set to zero, and each
module’s behaviour program is executed. This usually results in
transactions being scheduled on output signals for some later time.

In the first stage of a simulation cycle, the simulated time is advanced to
the earliest time at which a transaction has been scheduled. All
transactions scheduled for that time are executed, and this may cause
events to occur on some signals.

In the second stage, all modules which react to events occurring in the
first stage have their behaviour program executed. These programs will
usually schedule further transactions on their output signals. When all of
the behaviour programs have finished executing, the simulation cycle
repeats. If there are no more scheduled transactions, the whole simulation
is completed.

The purpose of the simulation is to gather information about the
changes in system state over time. This can be done by running the
simulation under the control of a simulation monitor. The monitor allows
signals and other state information to be viewed or stored in a trace file for
later analysis. It may also allow interactive stepping of the simulation
process, much like an interactive program debugger.

1.4. A Quick Example
In this section we will look at a small example of a VHDL description of

a two-bit counter to give you a feel for the language and how it is used. We
start the description of an entity by specifying its external interface, which
includes a description of its ports. So the counter might be defined as:

entity count2 is
generic (prop_delay : Time := 10 ns);
port (clock : in bit;

q1, q0 : out bit);
end count2;

This specifies that the entity count2 has one input and two outputs, all of
which are bit values, that is, they can take on the values '0' or '1'. It also
defines a generic constant called prop_delay which can be used to control the
operation of the entity (in this case its propagation delay). If no value is

1-4 The VHDL Cookbook

T_FLIPFLOP

CK Q

INVERTER
A Y

T_FLIPFLOP

CK Q

COUNT2

CLOCK Q0

Q1
FF1

FF0

INV_FF0

BIT_0

BIT_1
INV

Figure 1-2. Structure of count2.

explicitly given for this value when the entity is used in a design, the default
value of 10 ns will be used.

An implementation of the entity is described in an architecture body.
There may be more than one architecture body corresponding to a single
entity specification, each of which describes a different view of the entity.
For example, a behavioural description of the counter could be written as:

architecture behaviour of count2 is

begin

count_up: process (clock)

variable count_value : natural := 0;

begin

if clock = '1' then
count_value := (count_value + 1) mod 4;
q0 <= bit'val(count_value mod 2) after prop_delay;
q1 <= bit'val(count_value / 2) after prop_delay;

end if;
end process count_up;

end behaviour;

In this description of the counter, the behaviour is implemented by a
process called count_up, which is sensitive to the input clock. A process is a
body of code which is executed whenever any of the signals it is sensitive to
changes value. This process has a variable called count_value to store the
current state of the counter. The variable is initialized to zero at the start of
simulation, and retains its value between activations of the process. When
the clock input changes from '0' to '1', the state variable is incremented, and
transactions are scheduled on the two output ports based on the new value.
The assignments use the generic constant prop_delay to determine how long
after the clock change the transaction should be scheduled. When control
reaches the end of the process body, the process is suspended until another
change occurs on clock.

The two-bit counter might also be described as a circuit composed of two
T-flip-flops and an inverter, as shown in Figure 1-2. This can be written in
VHDL as:

1. Introduction 1-5

architecture structure of count2 is

component t_flipflop
port (ck : in bit; q : out bit);

end component;

component inverter
port (a : in bit; y : out bit);

end component;

signal ff0, ff1, inv_ff0 : bit;

begin

bit_0 : t_flipflop port map (ck => clock, q => ff0);

inv : inverter port map (a => ff0, y => inv_ff0);

bit_1 : t_flipflop port map (ck => inv_ff0, q => ff1);

q0 <= ff0;
q1 <= ff1;

end structure;

In this architecture, two component types are declared, t_flipflop and
inverter, and three internal signals are declared. Each of the components is
then instantiated, and the ports of the instances are mapped onto signals
and ports of the entity. For example, bit_0 is an instance of the t_flipflop
component, with its ck port connected to the clock port of the count2 entity,
and its q port connected to the internal signal ff0. The last two signal
assignments update the entity ports whenever the values on the internal
signals change.

