
7-1

31 0

31 0

31 0

R0

R255

PC

V N Z

•
•
• CC

Figure 7-1. DP32 registers.

7. Sample Models: The DP32 Processor

This chapter contains an extended example, a description of a
hypothetical processor called the DP32. The processor instruction set and
bus architectures are first described, and then a behavioural description is
given. A test bench model is constructed, and the model checked with a
small test program. Next, the processor is decomposed into components at
the register transfer level. A number of components are described, and a
structural description of the processor is constructed using these
components. The same test bench is used, but this time with the structural
architecture.

7.1. Instruction Set Architecture
The DP32 is a 32-bit processor with a simple instruction set. It has a

number of registers, shown in Figure 7-1. There are 256 general purpose
registers (R0–R255), a program counter (PC) and a condition code register
(CC). The general purpose registers are addressable by software, whereas
the PC and CC registers are not.

On reset, the PC is initialised to zero, and all other registers are
undefined. By convention, R0 is read-only and contains zero. This is not
enforced by hardware, and the zero value must be loaded by software after
reset.

The memory accessible to the DP32 consists of 32-bit words, addressed by
a 32-bit word-address. Instructions are all multiples of 32-bit words, and
are stored in this memory. The PC register contains the address of the next
instruction to be executed. After each instruction word is fetched, the PC is
incremented by one to point to the next word.

The three CC register bits are updated after each arithmetic or logical
instruction. The Z (zero) bit is set if the result is zero. The N (negative) bit
is set if the result of an arithmetic instruction is negative, and is undefined
after logical instructions. The V(overflow) bit is set if the result of an
arithmetic instruction exceeds the bounds of representable integers, and is

7-2 The VHDL Cookbook

Instruction Name Function opcode
Add add r3 ← r1 + r2 X“00”

Sub subtract r3 ← r1 − r2 X“01”

Mul multiply r3 ← r1 × r2 X“02”

Div divide r3 ← r1 ÷ r2 X“03”

Addq add quick r3 ← r1 + i8 X“10”

Subq subtract quick r3 ← r1 − i8 X“11”

Mulq multiply quick r3 ← r1 × i8 X“12”

Divq divide quick r3 ← r1 ÷ i8 X“13”

Land logical and r3 ← r1 & r2 X“04”

Lor logical or r3 ← r1 | r2 X“05”

Lxor logical exclusive or r3 ← r1 ⊕ r2 X“06”

Lmask logical mask r3 ← r1 & ~r2 X“07”

Table 7-1. DP32 arithmetic and logic instructions.

undefined after logical instructions.
The DP32 instruction set is divided into a number of encoding formats.

Firstly, arithmetic and logical instructions are all one 32-bit word long,
formatted as follows:

op r3 r1 r2/i8(Addr):
31 24 23 16 15 8 7 0

The op field is the op-code, r3 is the destination register address, r1 and r2
are source register addresses, and i8 is an immediate two-compliment
integer operand. The arithmetic and logical instructions are listed in
Table 7-1.

Memory load and store instructions have two formats, depending on
whether a long or short displacement value is used. The format for a long
displacement is:

op r3 r1 ignored(Addr):
31 24 23 16 15 8 7 0

(Addr+1): disp

The format for a short displacement is:

op r3 r1 i8(Addr):
31 24 23 16 15 8 7 0

The op field is the op-code, r3 specifies the register to be loaded or stored, r1
is used as an index register, disp is a long immediate displacement, and i8
is a short immediate displacement. The load and store instructions are
listed in Table 7-2.

7. Sample Models: The DP32 Processor 7-3

Instruction Name Function opcode
Ld load r3 ← M[r1 + disp32] X“20”

St store M[r1 + disp32] ← r3 X“21”

Ldq load quick r3 ← M[r1 + i8] X“30”

Stq store quick M[r1 + i8] ← r3 X“31”

Table 7-2. DP32 load and store instructions.

Instruction Name Function opcode
Br-ivnz branch if cond then

PC ← PC + disp32
X“40”

Brq-ivnz branch quick if cond then
PC ← PC + i8

X“51”

Bi-ivnz branch indexed if cond then
PC ← r1 + disp32

X“41”

Biq-ivnz branch indexed
quick

if cond then
PC ← r1 + i8

X“51”

Table 7-3. DP32 load and store instructions.

Finally, there are four branch instructions, listed in Table 7-3, each with
a slightly different format. The format of the ordinary brach is:

op xxxx(Addr):
31 24 23 16 15 8 7 0

(Addr+1): disp

ivnzxxxx
20 19

xxxx

The format of a quick branch is:

op(Addr):
31 24 23 16 15 8 7 0

ivnzxxxx
20 19

xxxx i8

The format of an indexed branch

op r1 xxxx(Addr):
31 24 23 16 15 8 7 0

(Addr+1): disp

ivnzxxxx
20 19

The format of a quick indexed branch

op(Addr):
31 24 23 16 15 8 7 0

ivnzxxxx
20 19

i8r1

The op field is the op-code, disp is a long immediate displacement, i8 is a
short immediate displacement, r1 is used as an index register, and ivnz is
a the condition mask. The branch is taken if

cond ≡ ((V & v) | (N & n) | (Z & z)) = i.

7-4 The VHDL Cookbook

PHI1
PHI2
RESET

FETCH
READ

WRITE

A_BUS

D_BUS

READY

DP32

Figure 7-2. DP32 port diagram.

phi1

phi2

Figure 7-3. DP32 clock waveforms.

7.2. Bus Architecture
The DP32 processor communicates with its memory over synchronous

32-bit address and data buses. The external ports of the DP32 are shown in
Figure 7-2.

The two clock inputs, phi1 and phi2, provide a two-phase non-overlapping
clock for the processor. The clock waveforms are shown in Figure 7-3.
Each cycle of the phi1 clock defines a bus state, one of Ti (idle), T1 or T2. Bus
transactions consist of a T1 state followed by one or more T2 states, with Ti
states between transactions.

The port a_bus is a 32-bit address bus, and d_bus is a 32-bit bidirection
data bus. The read and write ports control bus read and write transactions.
The fetch port is a status signal indicating that a bus read in progress is an
instruction fetch. The ready input is used by a memory device to indicate
that read data is available or write data has been accepted.

The timing for a bus read transaction is show in Figure 7-4. During an
idle state, Ti, the processor places the memory address on the address bus
to start the transaction. The next state is a T1 state. After the leading edge
of the phi1 clock, the processor asserts the read control signal, indicating
that the address is valid and the memory should start the read transaction.
The processor also asserts the fetch signal if it is reading instructions. It
always leaves the write signal negated during read transactions. During the
T1 state and the following T2 state, the memory accesses the requested data,
and places it on the data bus. If it has completed the data access by the end
of the T2 state, it asserts ready. The processor accepts the data, and
completes the transaction. On the other hand, if the memory has not yet
supplied the data by the end of the T2 state, it leaves ready false. The
processor then repeats T2 states until it detects ready true. By this means, a
slow memory can extend the transaction until it has read the data. At the
end of the transaction, the processor returns its control outputs to their
default values, and the memory negates ready and removes the data from
the data bus. The processor continues with idle states until the next
transaction is required.

The timing for a bus write transaction is show in Figure 7-5. Here also,
the transaction starts with the processor placing the address on the address
bus during a Ti state. After the leading edge of phi1 during the subsequent
T1 state, the processor negates fetch and asserts write. The read signal
remains false for the whole transaction. During the T1 state, the processor
also makes the data to be written available on the data bus. The memory

7. Sample Models: The DP32 Processor 7-5

phi1

phi2

valid addressa_bus

read

valid data ind_bus

ready

Ti T1 T2 Ti

fetch

write

valid fetch

Figure 7-4. DP32 bus read transaction.

phi1

phi2

valid addressa_bus

write

d_bus

ready

Ti T1 T2 Ti

valid data out

read

fetch

Figure 7-5. DP32 bus write transaction.

7-6 The VHDL Cookbook

package dp32_types is

constant unit_delay : Time := 1 ns;

type bool_to_bit_table is array (boolean) of bit;
constant bool_to_bit : bool_to_bit_table;

subtype bit_32 is bit_vector(31 downto 0);
type bit_32_array is array (integer range <>) of bit_32;
function resolve_bit_32 (driver : in bit_32_array) return bit_32;
subtype bus_bit_32 is resolve_bit_32 bit_32;

subtype bit_8 is bit_vector(7 downto 0);

subtype CC_bits is bit_vector(2 downto 0);
subtype cm_bits is bit_vector(3 downto 0);

constant op_add : bit_8 := X"00";
constant op_sub : bit_8 := X"01";
constant op_mul : bit_8 := X"02";
constant op_div : bit_8 := X"03";
constant op_addq : bit_8 := X"10";
constant op_subq : bit_8 := X"11";
constant op_mulq : bit_8 := X"12";
constant op_divq : bit_8 := X"13";
constant op_land : bit_8 := X"04";
constant op_lor : bit_8 := X"05";
constant op_lxor : bit_8 := X"06";
constant op_lmask : bit_8 := X"07";
constant op_ld : bit_8 := X"20";
constant op_st : bit_8 := X"21";
constant op_ldq : bit_8 := X"30";
constant op_stq : bit_8 := X"31";
constant op_br : bit_8 := X"40";
constant op_brq : bit_8 := X"50";
constant op_bi : bit_8 := X"41";
constant op_biq : bit_8 := X"51";

function bits_to_int (bits : in bit_vector) return integer;
function bits_to_natural (bits : in bit_vector) return natural;
procedure int_to_bits (int : in integer; bits : out bit_vector);

end dp32_types;

Figure 7-6. Package declaration for dp32_types.

can accept this data during the T1 and subsequent T2 states. If it has
completed the write by the end of the T2 state, it asserts ready. The
processor then completes the transaction and continutes with Ti states, and
the memory removes the data from the data bus and negates ready. If the
memory has not had time to complete the write by the end of the T2 state, it
leaves ready false. The processor will then repeat T2 states until it detects
ready true.

7.3. Types and Entity
We start the description of the DP32 processor by defining a package

containing the data types to be used in the model, and some useful
operations on those types. The package declaration of dp32_types is listed in
Figure 7-6.

7. Sample Models: The DP32 Processor 7-7

package body dp32_types is

constant bool_to_bit : bool_to_bit_table :=
(false => '0', true => '1');

function resolve_bit_32 (driver : in bit_32_array) return bit_32 is

constant float_value : bit_32 := X"0000_0000";
variable result : bit_32 := float_value;

begin
for i in driver'range loop

result := result or driver(i);
end loop;
return result;

end resolve_bit_32;

Figure 7-7. Package body for dp32_types.

The constant unit_delay is used as the default delay time through-out the
DP32 description. This approach is common when writing models to
describe the function of a digital system, before developing a detailed timing
model.

The constant bool_to_bit is a lookup table for converting between boolean
conditions and the type bit. Examples of its use will be seen later. Note that
it is a deferred constant, so its value will be given in the package body.

The next declarations define the basic 32-bit word used in the DP32
model. The function resolve_bit_32 is a resolution function used to
determine the value on a 32-bit bus with multiple drivers. Such a bus is
declared with the subtype bus_bit_32, a resolved type.

The subtype bit_8 is part of a 32-bit word used as an op-code or register
address. CC_bits is the type for condition codes, and cm_bits is the type for
the condition mask in a branch op-code.

The next set of constant declarations define the op-code bit patterns for
valid op-codes. These symbolic names are used as a matter of good coding
style, enabling the op-code values to be changed without having to modify
the model code in numerous places.

Finally, a collection of conversion functions between bit-vector values
and numeric values is defined. The bodies for these subprograms are
hidden in the package body.

The body of the dp32_types package is listed in Figure 7-7. Firstly the
value for the deferred constant bool_to_bit is given: false translates to '0' and
true translates to '1'. An example of the use of this table is:

flag_bit <= bool_to_bit(flag_condition);

Next, the body of the resolution function for 32-bit buses is defined. The
function takes as its parameter an unconstrained array of bit_32 values,
and produces as a result the bit-wide logical-or of the values. Note that the
function cannot assume that the length of the array will be greater than
one. If no drivers are active on the bus, an empty array will be passed to the
resolution function. In this case, the default value of all '0' bits (float_value)
is used as the result.

7-8 The VHDL Cookbook

function bits_to_int (bits : in bit_vector) return integer is

variable temp : bit_vector(bits'range);
variable result : integer := 0;

begin
if bits(bits'left) = '1' then -- negative number

temp := not bits;
else

temp := bits;
end if;
for index in bits'range loop -- sign bit of temp = '0'

result := result * 2 + bit'pos(temp(index));
end loop;
if bits(bits'left) = '1' then

result := (-result) - 1;
end if;
return result;

end bits_to_int;

function bits_to_natural (bits : in bit_vector) return natural is

variable result : natural := 0;

begin
for index in bits'range loop

result := result * 2 + bit'pos(bits(index));
end loop;
return result;

end bits_to_natural;

procedure int_to_bits (int : in integer; bits : out bit_vector) is

variable temp : integer;
variable result : bit_vector(bits'range);

begin
if int < 0 then

temp := -(int+1);
else

temp := int;
end if;
for index in bits'reverse_range loop

result(index) := bit'val(temp rem 2);
temp := temp / 2;

end loop;
if int < 0 then

result := not result;
result(bits'left) := '1';

end if;
bits := result;

end int_to_bits;

end dp32_types;

Figure 7-7 (continued).

The function bits_to_int converts a bit vector representing a twos-
compliment signed integer into an integer type value. The local variable
temp is declared to be a bit vector of the same size and index range as the
parameter bits. The variable result is initialised to zero when the function
is invoked, and subsequently used to accumulate the weighted bit values in

7. Sample Models: The DP32 Processor 7-9

use work.dp32_types.all;

entity dp32 is

generic (Tpd : Time := unit_delay);

port (d_bus : inout bus_bit_32 bus;
a_bus : out bit_32;
read, write : out bit;
fetch : out bit;
ready : in bit;
phi1, phi2 : in bit;
reset : in bit);

end dp32;

Figure 7-8. Entity declaration for dp32.

the for loop. The function bits_to_natural performs a similar function to
bits_to_int, but does not need to do any special processing for negative
numbers. Finally, the function int_to_bits performs the inverse of bits_to_int.

The entity declaration of the DP32 processor is shown in Figure 7-8. The
library unit is preceded by a use clause referencing all the items in the
package dp32_types. The entity has a generic constant Tpd used to specify
the propagation delays between input events and output signal changes.
The default value is the unit delay specified in the dp32_types package.
There are a number of ports corresponding to those shown in Figure 7-2.
The reset, clocks, and bus control signals are represented by values of type
bit. The address bus output is a simple bit-vector type, as the processor is
the only module driving that bus. On the other hand, the data bus is a
resolved bit-vector type, as it may be driven by both the processor and a
memory module. The word bus in the port declaration indicates that all
drivers for the data bus may be disconnected at the same time (ie, none of
them is driving the bus).

7.4. Behavioural Description
In this section a behavioural model of the DP32 processor will be

presented. This model can be used to run test programs in the DP32
instruction set by connecting it to a simulated memory model. The
architecture body for the behavioural description is listed in Figure 7-9.

The declaration section for the architecture body contains the
declaration for the DP32 register file type, and array of 32-bit words, indexed
by a natural number constrained to be in the range 0 to 255.

The architecture body contains only one concurrent statement, namely
an anonymous process which implements the behaviour as a sequential
algorithm. This process declares a number of variables which represent
the internal state of the processor: the register file (reg), the program
counter (PC), and the current instruction register (current_instr). A number
of working variables and aliases are also declared.

The procedure memory_read implements the behavioural model of a
memory read transaction. The parameters are the memory address to read
from, a flag indicating whether the read is an instruction fetch, and a
result parameter returning the data read. The procedure refers to the

7-10 The VHDL Cookbook

use work.dp32_types.all;

architecture behaviour of dp32 is

subtype reg_addr is natural range 0 to 255;
type reg_array is array (reg_addr) of bit_32;

begin -- behaviour of dp32

process

variable reg : reg_array;
variable PC : bit_32;
variable current_instr : bit_32;
variable op: bit_8;
variable r3, r1, r2 : reg_addr;
variable i8 : integer;
alias cm_i : bit is current_instr(19);
alias cm_V : bit is current_instr(18);
alias cm_N : bit is current_instr(17);
alias cm_Z : bit is current_instr(16);
variable cc_V, cc_N, cc_Z : bit;
variable temp_V, temp_N, temp_Z : bit;
variable displacement, effective_addr : bit_32;

Figure 7-9. Behavioural architecture body for dp32.

entity ports, which are visible because they are declared in the parent of the
procedure.

The memory_read model firstly drives the address and fetch bit ports, and
then waits until the next leading edge of phi1, indicating the start of the next
clock cycle. (The wait statement is sensitive to a change from '0' to '1' on
phi1.) When that event occurs, the model checks the state of the reset input
port, and if it is set, immediately returns without further action. If reset is
clear, the model starts a T1 state by asserting the read bit port a propagation
delay time after the clock edge. It then waits again until the next phi1
leading edge, indicating the start of the next clock cycle. Again, it checks
reset and discontinues if reset is set. The model then starts a loop executing
T2 states. It waits until phi2 changes from '1' to '0' (at the end of the cycle),
and then checks reset again, returning if it is set. Otherwise it checks the
ready bit input port, and if set, accepts the data from the data bus port and
exits the loop. If ready is not set, the loop repeats, adding another T2 state to
the transaction. After the loop, the model waits for the next clock edge
indicating the start of the Ti state at the end of the transaction. After
checking reset again, the model clears ready to complete the transaction,
and returns to the parent process.

The procedure memory_write is similar, implementing the model for a
memory write transaction. The parameters are simply the memory
address to write to, and the data to write. The model similarly has reset
checks after each wait point. One difference is that at the end of the
transaction, there is a null signal assignment to the data bus port. This
models the bahaviour of the processor disconnecting from the data bus, that
is, at this point it stops driving the port.

7. Sample Models: The DP32 Processor 7-11

procedure memory_read (addr : in bit_32;
fetch_cycle : in boolean;
result : out bit_32) is

begin
-- start bus cycle with address output
a_bus <= addr after Tpd;
fetch <= bool_to_bit(fetch_cycle) after Tpd;
wait until phi1 = '1';
if reset = '1' then

return;
end if;
--
-- T1 phase
--
read <= '1' after Tpd;
wait until phi1 = '1';
if reset = '1' then

return;
end if;
--
-- T2 phase
--
loop

wait until phi2 = '0';
if reset = '1' then

return;
end if;
-- end of T2
if ready = '1' then

result := d_bus;
exit;

end if;
end loop;
wait until phi1 = '1';
if reset = '1' then

return;
end if;
--
-- Ti phase at end of cycle
--
read <= '0' after Tpd;

end memory_read;

Figure 7-9 (continued).

7-12 The VHDL Cookbook

procedure memory_write (addr : in bit_32;
data : in bit_32) is

begin
-- start bus cycle with address output
a_bus <= addr after Tpd;
fetch <= '0' after Tpd;
wait until phi1 = '1';
if reset = '1' then

return;
end if;
--
-- T1 phase
--
write <= '1' after Tpd;
wait until phi2 = '1';
d_bus <= data after Tpd;
wait until phi1 = '1';
if reset = '1' then

return;
end if;
--
-- T2 phase
--
loop

wait until phi2 = '0';
if reset = '1' then

return;
end if;
-- end of T2
exit when ready = '1';

end loop;
wait until phi1 = '1';
if reset = '1' then

return;
end if;
--
-- Ti phase at end of cycle
--
write <= '0' after Tpd;
d_bus <= null after Tpd;

end memory_write;

Figure 7-9 (continued).

7. Sample Models: The DP32 Processor 7-13

procedure add (result : inout bit_32;
op1, op2 : in integer;
V, N, Z : out bit) is

begin
if op2 > 0 and op1 > integer'high-op2 then -- positive overflow

int_to_bits(((integer'low+op1)+op2)-integer'high-1, result);
V := '1';

elsif op2 < 0 and op1 < integer'low-op2 then -- negative overflow
int_to_bits(((integer'high+op1)+op2)-integer'low+1, result);
V := '1';

else
int_to_bits(op1 + op2, result);
V := '0';

end if;
N := result(31);
Z := bool_to_bit(result = X"0000_0000");

end add;

procedure subtract (result : inout bit_32;
op1, op2 : in integer;
V, N, Z : out bit) is

begin
if op2 < 0 and op1 > integer'high+op2 then -- positive overflow

int_to_bits(((integer'low+op1)-op2)-integer'high-1, result);
V := '1';

elsif op2 > 0 and op1 < integer'low+op2 then -- negative overflow
int_to_bits(((integer'high+op1)-op2)-integer'low+1, result);
V := '1';

else
int_to_bits(op1 - op2, result);
V := '0';

end if;
N := result(31);
Z := bool_to_bit(result = X"0000_0000");

end subtract;

Figure 7-9 (continued).

The next four procedures, add, subtract, multiply and divide, implement the
arithmetic operations on 32-bit words representing twos-complement
signed integers. They each take two integer operands, and produce a 32-bit
word result and the three condition code flags V (overflow), N (negative)
and Z (zero). The result parameter is of mode inout because the test for
negative and zero results read its value after it has been written. Each
procedure is carefully coded to avoid causing an integer overflow on the
host machine executing the model (assuming that machine uses 32-bit
integers). The add and subtract procedures wrap around if overflow occurs,
and multiply and divide return the largest or smallest integer.

Following these procedures is the body of the process which implements
the DP32 behavioural model. This process is activated during the
initialisation phase of a simulation. It consists of three sections which are
repeated sequentially: reset processing, instruction fetch, and instruction
execution.

7-14 The VHDL Cookbook

procedure multiply (result : inout bit_32;
op1, op2 : in integer;
V, N, Z : out bit) is

begin
if ((op1>0 and op2>0) or (op1<0 and op2<0)) -- result positive

and (abs op1 > integer'high / abs op2) then -- positive overflow
int_to_bits(integer'high, result);
V := '1';

elsif ((op1>0 and op2<0) or (op1<0 and op2>0)) -- result negative
and ((- abs op1) < integer'low / abs op2) then -- negative overflow

int_to_bits(integer'low, result);
V := '1';

else
int_to_bits(op1 * op2, result);
V := '0';

end if;
N := result(31);
Z := bool_to_bit(result = X"0000_0000");

end multiply;

procedure divide (result : inout bit_32;
op1, op2 : in integer;
V, N, Z : out bit) is

begin
if op2=0 then

if op1>=0 then -- positive overflow
int_to_bits(integer'high, result);

else
int_to_bits(integer'low, result);

end if;
V := '1';

else
int_to_bits(op1 / op2, result);
V := '0';

end if;
N := result(31);
Z := bool_to_bit(result = X"0000_0000");

end divide;

Figure 7-9 (continued).

When the reset input is asserted, all of the control ports are returned to
their initial states, the data bus driver is disconnected, and the PC register
is cleared. The model then waits until reset is negated before proceeding.
Throughout the rest of the model, the reset input is checked after each bus
transaction. If the transaction was aborted by reset being asserted, no
further action is taken in fetching or executing an instruction, and control
falls through to the reset handling code.

The instruction fetch part is simply a call to the memory read
procedure. The PC register is used to provide the address, the fetch flag is
true, and the result is returned into the current instruction register. The
PC register is then incremented by one using the arithmetic procedure
previously defined.

The fetched instruction is next decoded into its component parts: the op-
code, the source and destination register addresses and an immediate
constant field. The op-code is then used as the selector for a case statement

7. Sample Models: The DP32 Processor 7-15

begin
--
-- check for reset active
--
if reset = '1' then

read <= '0' after Tpd;
write <= '0' after Tpd;
fetch <= '0' after Tpd;
d_bus <= null after Tpd;
PC := X"0000_0000";
wait until reset = '0';

end if;
--
-- fetch next instruction
--
memory_read(PC, true, current_instr);
if reset /= '1' then

add(PC, bits_to_int(PC), 1, temp_V, temp_N, temp_Z);
--
-- decode & execute
--
op := current_instr(31 downto 24);
r3 := bits_to_natural(current_instr(23 downto 16));
r1 := bits_to_natural(current_instr(15 downto 8));
r2 := bits_to_natural(current_instr(7 downto 0));
i8 := bits_to_int(current_instr(7 downto 0));

Figure 7-9 (continued).

which codes the instruction execution. For the arithmetic instructions
(including the quick forms), the arithmetic procedures previously defined
are invoked. For the logical instructions, the register bit-vector values are
used in VHDL logical expressions to determine the bit-vector result. The
condition code Z flag is set if the result is a bit-vector of all '0' bits.

The model executes a load instruction by firstly reading the
displacement from memory and incrementing the PC register. The
displacement is added to the value of the index register to form the effective
address. This is then used in a memory read to load the data into the result
register. A quick load is executed similarly, except that no memory read is
needed to fetch the displacement; the variable i8 decoded from the
instruction is used. The store and quick store instructions parallel the load
instructions, with the memory data read being replaced by a memory data
write.

Execution of a branch instruction starts with a memory read to fetch the
displacement, and an add to increment the PC register by one. The
displacement is added to the value of the PC register to form the effective
address. Next, the condition expression is evaluated, comparing the
condition code bits with the condition mask in the instruction, to determine
whether the branch is taken. If it is, the PC register takes on the effective
address value. The branch indexed instruction is similar, with the index
register value replacing the PC value to form the effective address. The
quick branch forms are also similar, with the immediate constant being
used for the displacement instead of a value fetched from memory.

7-16 The VHDL Cookbook

case op is
when op_add =>

add(reg(r3), bits_to_int(reg(r1)), bits_to_int(reg(r2)),
cc_V, cc_N, cc_Z);

when op_addq =>
add(reg(r3), bits_to_int(reg(r1)), i8, cc_V, cc_N, cc_Z);

when op_sub =>
subtract(reg(r3), bits_to_int(reg(r1)), bits_to_int(reg(r2)),

cc_V, cc_N, cc_Z);
when op_subq =>

subtract(reg(r3), bits_to_int(reg(r1)), i8, cc_V, cc_N, cc_Z);
when op_mul =>

multiply(reg(r3), bits_to_int(reg(r1)), bits_to_int(reg(r2)),
cc_V, cc_N, cc_Z);

when op_mulq =>
multiply(reg(r3), bits_to_int(reg(r1)), i8, cc_V, cc_N, cc_Z);

when op_div =>
divide(reg(r3), bits_to_int(reg(r1)), bits_to_int(reg(r2)),

cc_V, cc_N, cc_Z);
when op_divq =>

divide(reg(r3), bits_to_int(reg(r1)), i8, cc_V, cc_N, cc_Z);
when op_land =>

reg(r3) := reg(r1) and reg(r2);
cc_Z := bool_to_bit(reg(r3) = X"0000_0000");

when op_lor =>
reg(r3) := reg(r1) or reg(r2);
cc_Z := bool_to_bit(reg(r3) = X"0000_0000");

when op_lxor =>
reg(r3) := reg(r1) xor reg(r2);
cc_Z := bool_to_bit(reg(r3) = X"0000_0000");

when op_lmask =>
reg(r3) := reg(r1) and not reg(r2);
cc_Z := bool_to_bit(reg(r3) = X"0000_0000");

when op_ld =>
memory_read(PC, true, displacement);
if reset /= '1' then

add(PC, bits_to_int(PC), 1, temp_V, temp_N, temp_Z);
add(effective_addr,

bits_to_int(reg(r1)), bits_to_int(displacement),
temp_V, temp_N, temp_Z);

memory_read(effective_addr, false, reg(r3));
end if;

when op_ldq =>
add(effective_addr,

bits_to_int(reg(r1)), i8,
temp_V, temp_N, temp_Z);

memory_read(effective_addr, false, reg(r3));
when op_st =>

memory_read(PC, true, displacement);
if reset /= '1' then

add(PC, bits_to_int(PC), 1, temp_V, temp_N, temp_Z);
add(effective_addr,

bits_to_int(reg(r1)), bits_to_int(displacement),
temp_V, temp_N, temp_Z);

memory_write(effective_addr, reg(r3));
end if;

Figure 7-9 (continued).

7. Sample Models: The DP32 Processor 7-17

when op_stq =>
add(effective_addr,

bits_to_int(reg(r1)), i8,
temp_V, temp_N, temp_Z);

memory_write(effective_addr, reg(r3));
when op_br =>

memory_read(PC, true, displacement);
if reset /= '1' then

add(PC, bits_to_int(PC), 1, temp_V, temp_N, temp_Z);
add(effective_addr,

bits_to_int(PC), bits_to_int(displacement),
temp_V, temp_N, temp_Z);

if ((cm_V and cc_V) or (cm_N and cc_N) or (cm_Z and cc_Z))
= cm_i then

PC := effective_addr;
end if;

end if;
when op_bi =>

memory_read(PC, true, displacement);
if reset /= '1' then

add(PC, bits_to_int(PC), 1, temp_V, temp_N, temp_Z);
add(effective_addr,

bits_to_int(reg(r1)), bits_to_int(displacement),
temp_V, temp_N, temp_Z);

if ((cm_V and cc_V) or (cm_N and cc_N) or (cm_Z and cc_Z))
= cm_i then

PC := effective_addr;
end if;

end if;
when op_brq =>

add(effective_addr,
bits_to_int(PC), i8,
temp_V, temp_N, temp_Z);

if ((cm_V and cc_V) or (cm_N and cc_N) or (cm_Z and cc_Z))
= cm_i then

PC := effective_addr;
end if;

when op_biq =>
add(effective_addr,

bits_to_int(reg(r1)), i8,
temp_V, temp_N, temp_Z);

if ((cm_V and cc_V) or (cm_N and cc_N) or (cm_Z and cc_Z))
= cm_i then

PC := effective_addr;
end if;

when others =>
assert false report "illegal instruction" severity warning;

end case;
end if; -- reset /= '1'

end process;

end behaviour;

Figure 7-9 (continued).

7-18 The VHDL Cookbook

PHI1
PHI2
RESET

FETCH
READ

WRITE

A_BUS

D_BUS

READY

DP32
PHI1
PHI2

RESET

CLOCK_GEN

FETCH
READ
WRITE

A_BUS

D_BUS

READY

MEMORY

Figure 7-10. Test bench circuit for DP32.

use work.dp32_types.all;

entity clock_gen is
generic (Tpw : Time; -- clock pulse width

 Tps : Time); -- pulse separation between phases
port (phi1, phi2 : out bit;

reset : out bit);
end clock_gen;

architecture behaviour of clock_gen is

constant clock_period : Time := 2*(Tpw+Tps);

begin

reset_driver :
reset <= '1', '0' after 2*clock_period+Tpw;

clock_driver : process
begin

phi1 <= '1', '0' after Tpw;
phi2 <= '1' after Tpw+Tps, '0' after Tpw+Tps+Tpw;
wait for clock_period;

end process clock_driver;

end behaviour;

Figure 7-11. Description of clock_gen driver.

7.5. Test Bench
One way of testing the behavioural model of the DP32 processor is to

connect it in a test bench circuit, shown in Figure 7-10. The clock_gen
component generates the two-phase clock and the reset signal to drive the
processor. The memory stores a test program and data. We write
behavioural models for these two components, and connect them in a
structural description of the test bench.

Figure 7-11 lists the entity declaration and behavioural architecture of
the clock generator. The clock_gen entity has two formal generic constants.
Tpw is the pulse width for each of phi1 and phi2, that is, the time for which
each clock is '1'. Tps is the pulse separation, that is, the time between one
clock signal changing to '0' and the other clock signal changing to '1'.

7. Sample Models: The DP32 Processor 7-19

Based on these values, the clock period is twice the sum of the pulse width
and the separation.

The architecture of the clock generator consists of two concurrent
statements, one to drive the reset signal and the other to drive the clock
signals. The reset driver schedules a '1' value on reset when it is activated
at simulation initialisation, followed by a '0' a little after two clock periods
later. This concurrent statement is never subsequently reactivated, since
its waveform list does not refer to any signals. The clock driver process,
when activated, schedules a pulse on phi1 immediately, followed by a pulse
on phi2, and then suspends for a clock period. When it resumes, it repeats,
scheduling the next clock cycle.

The entity declaration and behavioural architecture of the memory
module are shown in Figure 7-12. The architecture body consists of one
process to implement the behaviour. The process contains an array
variable to represent the storage of the memory. When the process is
activated, it places the output ports in an initial state: the data bus
disconnected and the ready bit negated. It then waits for either a read or
write command. When one of these occurs, the address is sampled and
converted from a bit-vector to a number. If it is within the address bounds
of the memory, the command is acted upon.

For a write command, the ready bit is asserted after a delay representing
the write access time of the memory, and then the model waits until the end
of the write cycle. At that time, the value on the data bus from a
propagation delay beforehand is sampled and written into the memory
array. The use of this delayed value models the fact that memory devices
actually store the data that was valid a setup-time before the triggering edge
of the command bit.

For a read command, the data from the memory array is accessed and
placed on the data bus after a delay. This delay represents the read access
time of the memory. The ready bit is also asserted after the delay, indicating
that the processor may continue. The memory then waits until the end of
the read cycle.

At the end of a memory cycle, the process repeats, setting the data bus
and ready bit drivers to their initial state, and waiting for the next
command.

Figure 7-13 shows the entity declaration and structural architecture of
the test bench circuit. The entity contains no ports, since there are no
external connections to the test bench. The architecture body contains
component declarations for the clock driver, the memory and the processor.
The ports in these component declarations correspond exactly to those of the
entity declarations. There are no formal generic constants, so the actuals
for the generics in the entity declarations will be specified in a
configuration. The architecture body next declares the signals which are
used to connect the components together. These signals may be traced by a
simulation monitor when the simulation is run. The concurrent
statements of the architecture body consist of the three component
instances.

7-20 The VHDL Cookbook

use work.dp32_types.all;

entity memory is
generic (Tpd : Time := unit_delay);
port (d_bus : inout bus_bit_32 bus;

a_bus : in bit_32;
read, write : in bit;
ready : out bit);

end memory;

architecture behaviour of memory is
begin

process

constant low_address : integer := 0;
constant high_address : integer := 65535;
type memory_array is

array (integer range low_address to high_address) of bit_32;
variable mem : memory_array;
variable address : integer;

begin
--
-- put d_bus and reply into initial state
--
d_bus <= null after Tpd;
ready <= '0' after Tpd;
--
-- wait for a command
--
wait until (read = '1') or (write = '1');
--
-- dispatch read or write cycle
--
address := bits_to_int(a_bus);
if address >= low_address and address <= high_address then

-- address match for this memory
if write = '1' then

ready <= '1' after Tpd;
wait until write = '0'; -- wait until end of write cycle
mem(address) := d_bus'delayed(Tpd); -- sample data from Tpd ago

else -- read = '1'
d_bus <= mem(address) after Tpd; -- fetch data
ready <= '1' after Tpd;
wait until read = '0'; -- hold for read cycle

end if;
end if;

end process;

end behaviour;

Figure 7-12. Description of memory module.

7. Sample Models: The DP32 Processor 7-21

use work.dp32_types.all;

entity dp32_test is
end dp32_test;

architecture structure of dp32_test is

component clock_gen
port (phi1, phi2 : out bit;

reset : out bit);
end component;

component dp32
port (d_bus : inout bus_bit_32 bus;

a_bus : out bit_32;
read, write : out bit;
fetch : out bit;
ready : in bit;
phi1, phi2 : in bit;
reset : in bit);

end component;

component memory
port (d_bus : inout bus_bit_32 bus;

a_bus : in bit_32;
read, write : in bit;
ready : out bit);

end component;

signal d_bus : bus_bit_32 bus;
signal a_bus : bit_32;
signal read, write : bit;
signal fetch : bit;
signal ready : bit;
signal phi1, phi2 : bit;
signal reset : bit;

begin

cg : clock_gen
port map (phi1 => phi1, phi2 => phi2, reset => reset);

proc : dp32
port map (d_bus => d_bus, a_bus => a_bus,

read => read, write => write, fetch => fetch,
ready => ready,
phi1 => phi1, phi2 => phi2, reset => reset);

mem : memory
port map (d_bus => d_bus, a_bus => a_bus,

read => read, write => write, ready => ready);

end structure;

Figure 7-13. Description of test bench circuit.

7-22 The VHDL Cookbook

configuration dp32_behaviour_test of dp32_test is
for structure

for cg : clock_gen
use entity work.clock_gen(behaviour)

generic map (Tpw => 8 ns, Tps => 2 ns);
end for;
for mem : memory

use entity work.memory(behaviour);
end for;
for proc : dp32

use entity work.dp32(behaviour);
end for;

end for;
end dp32_behaviour_test;

Figure 7-14. Configuration of test bench using behaviour of DP32.

Lastly, a configuration for the test bench, using the behavioural
description of the DP32 processor, is listed in Figure 7-14. The
configuration specifies that each of the components in the structure
architecture of the test bench should use the behaviour architecture of the
corresponding entity. Actual generic constants are specified for the clock
generator, giving a clock period of 20 ns. The default values for the generic
constants of the other entities are used.

In order to run the test bench model, a simulation monitor is invoked
and a test program loaded into the array variable in the memory model.
The author used the Zycad System VHDL™ simulation system for this
purpose. Figure 7-15 is an extract from the listing produced by an
assembler created for the DP32 processor. The test program initializes R0
to zero (the assembler macro initr0 generates an lmask instruction), and
then loops incrementing a counter in memory. The values in parentheses
are the instruction addresses, and the hexadecimal values in square
brackets are the assembled instructions.

™ Zycad System VHDL is a trademark of Zycad Corporation.

7. Sample Models: The DP32 Processor 7-23

 1. include dp32.inc $

 2.

 3. !!! conventions:

 4. !!! r0 = 0

 5. !!! r1 scratch

 6.

 7. begin

 8. (0) [07000000] initr0

 9. start:

10. (1) [10020000] addq(r2, r0, 0) ! r2 := 0

11. loop:

12. (2) [21020000 00000008] sta(r2, counter) ! counter := r2

13. (4) [10020201] addq(r2, r2, 1) ! increment r2

14. (5) [1101020A] subq(r1, r2, 10) ! if r2 = 10 then

15. (6) [500900FA] brzq(start) ! restart

16. (7) [500000FA] braq(loop) ! else next loop

17.

18. counter:

19. (8) [00000000] data(0)

20. end

Figure 7-15. Assembler listing of a test program.

7-24 The VHDL Cookbook

Control

Addr

Op1 Bus

R Bus

Op2 Bus

A Bus

D Bus

Bus Command

Bus Reply

CC

op r3 r1 r2

CC
comp

A2
A1
A3

Register
File

Q1 Q2 D3

A1 A2 A3

A1 A2 A3

Res

PC

Disp

Figure 7-16. DP32 data paths block diagram.

7.6. Register Transfer Architecture
The previous descriptions of the DP32 specified its behaviour without

reference to the internal structure of the processor. Such a description is
invaluable, as it allows the computer architect to evaluate the instruction
set and compare it with alternatives before commiting expensive resources
to detailed design and implementation.

Once this abstract architecture has been settled on, the next level of
architecture can be designed. Figure 7-16 is a block diagram of a simple
architecture to implement the DP32 instrcuction set. (Most control signals
are not shown.) It consists mainly of a collection of registers and an
arithmetic and logic unit (ALU), connected by a number of buses. There
are also buffers for interfacing to the processor-memory bus, and a control
unit for sequencing operation of the processor.

The software addressable registers are implemented using a three-port
register file. Ports 1 and 2 supply source operands onto the op1 and op2
buses respectively. The address for port 2 is normally taken from the r2
field of the current instruction, but a multiplexor is included to allow the r3
field to be used when a store instruction is executed. The op1 and op2 buses

7. Sample Models: The DP32 Processor 7-25

use work.dp32_types.all;

entity mux2 is
generic (width : positive;

Tpd : Time := unit_delay);
port (i0, i1 : in bit_vector(width-1 downto 0);

y : out bit_vector(width-1 downto 0);
sel : in bit);

end mux2;

architecture behaviour of mux2 is
begin

with sel select
y <= i0 after Tpd when '0',

i1 after Tpd when '1';
end behaviour;

Figure 7-17. Description of 2-input multiplexor.

are connected to the ALU inputs, and the ALU output drives the result bus.
The result can be latched for writing back to the register file using port 3.
The program counter (PC) register also supplies the op1 bus, and can be
loaded from the result bus. The ALU condition flags are latched into the
condition code (CC) register, and from there can be compared with the
condition mask from the current instruction. The memory bus interface
includes an address latch to drive the address bus, a data output buffer
driven from the op2 bus, a data input buffer driving the result bus, and a
displacement latch driving the op2 bus. An instruction fetched from
memory is stored in current instruction register. The r1, r2 and r3 fields
are used as register file addresses. The r2 field is also used as an
immediate constant and may be sign extended onto the op2 bus. Four bits
from the r3 field are used as the condition mask, and the opcode field is
used by the control unit.

In this section, descriptions will be given for each of the sub-modules in
this architecture, and then they will be used in a structural architecture
body of the DP32 entity.

7.6.1. Multiplexor
An entity declaration and architecture body for a 2-input multiplexor is

listed in Figure 7-17. The entity has a select input bit, two bit-vector inputs
i0 and i1, and a bit-vector output y. The size of the bit-vector ports is
determined by the generic constant width, which must be specified when the
entity is used in a structural description. The architecture body contains a
concurrent selected signal assignment, which uses the value of the select
input to determine which of the two bit-vector inputs is passed through to
the output. The assignment is sensitive to all of the input signals, so when
any of them changes, the assignment will be resumed.

7.6.2. Transparent Latch
An entity declaration and architecture body for a latch is listed in

Figure 7-18. The entity has an enable input bit, a bit-vector input d, and a
bit-vector output q. The size of the bit-vector ports is determined by the
generic constant width, which must be specified when the entity is used in a
structural description. The architecture body contains a process which is

7-26 The VHDL Cookbook

use work.dp32_types.all;

entity latch is
generic (width : positive;

Tpd : Time := unit_delay);
port (d : in bit_vector(width-1 downto 0);

q : out bit_vector(width-1 downto 0);
en : in bit);

end latch;

architecture behaviour of latch is

begin

process (d, en)
begin

if en = '1' then
q <= d after Tpd;

end if;
end process;

end behaviour;

Figure 7-18. Description of a transparent latch.

sensitive to the d and en inputs. The behaviour of the latch is such that
when en is '1', changes on d are transmitted through to q. However, when
en changes to '0', any new value on d is ignored, and the current value on q
is maintained. In the model shown in Figure 7-18, the latch storage is
provided by the output port, in that if no new value is assigned to it, the
current value does not change.

7.6.3. Buffer
An entity declaration and architecture body for a buffer is listed in

Figure 7-19. The entity has an enable input bit en, a bit-vector input a, and a
resolved bit-vector bus output b. It is not possible to make this entity generic
with respect to input and output port width, because of a limitation imposed
by the VHDL language semantics. The output port needs to be a resolved
signal, so a bus resolution function is specified in the definition of the port
type. This function takes a parameter which is an unconstrained array.
In order to make the buffer port width generic, we would need to specify a
bus resolution function which took as a parameter an unconstrained array
of bit-vector elements whose length is not known. VHDL does not allow the
element type of an unconstrained array to be an unconstrained array, so
this approach is not possible. For this reason, we define a buffer entity with
fixed port widths of 32 bits.

The behaviour of the buffer is implemented by a process sensitive to the
en and a inputs. If en is '1', the a input is transmitted through to the b
output. If en is '0', the driver for b is disconnected, and the value on a is
ignored.

7. Sample Models: The DP32 Processor 7-27

use work.dp32_types.all;

entity buffer_32 is
generic (Tpd : Time := unit_delay);
port (a : in bit_32;

b : out bus_bit_32 bus;
en : in bit);

end buffer_32;

architecture behaviour of buffer_32 is

begin

b_driver: process (en, a)
begin

if en = '1' then
b <= a after Tpd;

else
b <= null after Tpd;

end if;
end process b_driver;

end behaviour;

Figure 7-19. Description of a buffer.

use work.dp32_types.all;

entity signext_8_32 is
generic (Tpd : Time := unit_delay);
port (a : in bit_8;

b : out bus_bit_32 bus;
en : in bit);

end signext_8_32;

architecture behaviour of signext_8_32 is

begin

b_driver: process (en, a)
begin

if en = '1' then
b(7 downto 0) <= a after Tpd;
if a(7) = '1' then

b(31 downto 8) <= X"FFFF_FF" after Tpd;
else

b(31 downto 8) <= X"0000_00" after Tpd;
end if;

else
b <= null after Tpd;

end if;
end process b_driver;

end behaviour;

Figure 7-20. Description of the sign extending buffer.

7-28 The VHDL Cookbook

use work.dp32_types.all;

entity latch_buffer_32 is
generic (Tpd : Time := unit_delay);
port (d : in bit_32;

q : out bus_bit_32 bus;
latch_en : in bit;
out_en : in bit);

end latch_buffer_32;

architecture behaviour of latch_buffer_32 is

begin

process (d, latch_en, out_en)
variable latched_value : bit_32;

begin
if latch_en = '1' then

latched_value := d;
end if;
if out_en = '1' then

q <= latched_value after Tpd;
else

q <= null after Tpd;
end if;

end process;

end behaviour;

Figure 7-21. Description of a latching buffer.

7.6.4. Sign Extending Buffer
The sign-extending buffer shown in Figure 7-20 is almost identical to the

plain buffer, except that it has an 8-bit input. This input is treated as a
twos-complement signed integer, and the output is the same integer, but
extended to 32 bits. The extension is achieved by replicating the sign bit into
bits 8 to 31 of the output.

7.6.5. Latching Buffer
Figure 7-21 lists an entity declaration an architecture body for a latching

buffer. This model is a combination of those for the plain latch and buffer.
When latch_en is '1', changes on d are stored in the latch, and may be
transmitted through to q. However, when latch_en changes to '0', any new
value on d is ignored, and the currently stored value is maintained. The
out_en input controls whether the stored value is tranmitted to the output.
Unlike the plain latch, explicit storage must be provided (in the form of the
variable latched_value), since the output driver may be disconnected when a
new value is to be stored.

7.6.6. Program Counter Register
The entity declaration and architecture body of the PC register are listed

in Figure 7-22. The PC register is a master/slave type register, which can
be reset to all zeros by asserting the reset input. When reset is negated, the
latch operates normally. With latch_en at '1', the value of the d input is
stored in the variable master_PC, but the output (if enabled) is driven from
the previously stored value in slave_PC. Then when latch_en changes from

7. Sample Models: The DP32 Processor 7-29

use work.dp32_types.all;

entity PC_reg is
generic (Tpd : Time := unit_delay);
port (d : in bit_32;

q : out bus_bit_32 bus;
latch_en : in bit;
out_en : in bit;
reset : in bit);

end PC_reg;

architecture behaviour of PC_reg is

begin

process (d, latch_en, out_en, reset)
variable master_PC, slave_PC : bit_32;

begin
if reset = '1' then

slave_PC := X"0000_0000";
elsif latch_en = '1' then

master_PC := d;
else

slave_PC := master_PC;
end if;
if out_en = '1' then

q <= slave_PC after Tpd;
else

q <= null after Tpd;
end if;

end process;

end behaviour;

Figure 7-22. Description of the PC register.

'1' to '0', the slave value is update from the master value, and any
subsequent changes in the d input are ignored. This behaviour means that
the PC register output can be used to derive a new value, and the new value
written back at the same time. If an ordinary transparent latch were used,
a race condition would be created, since the new value would be transmitted
through to the output in place of the old value, affecting the calculation of
the new value.

7.6.7. Register File
Figure 7-23 lists the description of the 3-port register file, with two read

ports and one write port. Each port has an address input (a1, a2 and a3)
and an enable input (en1, en2 and en3). The read ports have data bus
outputs (q1 and q2), and the write port has a data input (d3). The number
bits in the port addresses is determined by the generic constant depth. The
behaviour of the entity is implemented by the process reg_file. It declares a
numeric type used to index the register file, and an array for the register
file storage. When any of the inputs change, firstly the write port enable is
checked, and if asserted, the addressed register is updated. Then each of
the read port enables is checked. If asserted, the addressed data is fetched
and driven onto the corresponding data output bus. If the port is disabled,
the data output bus driver is disconnected.

7-30 The VHDL Cookbook

use work.dp32_types.all;

entity reg_file_32_rrw is
generic (depth : positive; -- number of address bits

Tpd : Time := unit_delay;
Tac : Time := unit_delay);

port (a1 : in bit_vector(depth-1 downto 0);
q1 : out bus_bit_32 bus;
en1 : in bit;
a2 : in bit_vector(depth-1 downto 0);
q2 : out bus_bit_32 bus;
en2 : in bit;
a3 : in bit_vector(depth-1 downto 0);
d3 : in bit_32;
en3 : in bit);

end reg_file_32_rrw;

architecture behaviour of reg_file_32_rrw is

begin

reg_file: process (a1, en1, a2, en2, a3, d3, en3)

subtype reg_addr is natural range 0 to depth-1;
type register_array is array (reg_addr) of bit_32;

variable registers : register_array;

begin
if en3 = '1' then

registers(bits_to_natural(a3)) := d3;
end if;
if en1 = '1' then

q1 <= registers(bits_to_natural(a1)) after Tac;
else

q1 <= null after Tpd;
end if;
if en2 = '1' then

q2 <= registers(bits_to_natural(a2)) after Tac;
else

q2 <= null after Tpd;
end if;

end process reg_file;

end behaviour;

Figure 7-23. Description of the 3-port register file.

7.6.8. Arithmetic & Logic Unit
The description of the ALU is listed in Figure 7-24. The package

ALU_32_types defines an enumerated type for specifying the ALU function.
This must be placed in a package, since it is required for both the ALU
description and for entities that make use of the ALU. There is no
corresponding package body, since the type is fully defined in the package
specification.

The ALU entity declaration uses the ALU_32_types package as well as the
general dp32_types package. It has two operand input ports, a result output
and condition code output ports, and a command input port. This last port
is an example of a port which is of an enumerated type, since at this stage

7. Sample Models: The DP32 Processor 7-31

package ALU_32_types is

type ALU_command is (disable, pass1, incr1,
add, subtract, multiply, divide,
log_and, log_or, log_xor, log_mask);

end ALU_32_types;

use work.dp32_types.all, work.ALU_32_types.all;

entity ALU_32 is
generic (Tpd : Time := unit_delay);
port (operand1 : in bit_32;

operand2 : in bit_32;
result : out bus_bit_32 bus;
cond_code : out CC_bits;
command : in ALU_command);

end ALU_32;

Figure 7-24. Description of the Arithmetic and Logic Unit.

of design, no encoding is known or specified for the ALU function
command.

The ALU behaviour is implemented by the process ALU_function, sensitive
to changes on the operand and command input ports. If the command to be
performed is an arithmetic operation, the model firstly converts the
operands to integers. This is followed by a case statement dispatching on
the command. For the disable command, no operation is performed, and for
the pass1 command, the result is operand1 unchanged. The result for logic
commands is derived by applying the corresponding VHDL logical
operations to the bit-vector operands. For arithmetic commands the result
is computed the same was as it was in the behavioural model of the DP32
presented in Section 7.4. Also, the overflow condition code bit (cc_V), which
is only defined for arithmetic operations, is assigned here. Finally, the
result and remaining condition code bits are assigned. The result output is
only driven if the command is not disable, otherwise it is disconnected.

7-32 The VHDL Cookbook

architecture behaviour of ALU_32 is

alias cc_V : bit is cond_code(2);
alias cc_N : bit is cond_code(1);
alias cc_Z : bit is cond_code(0);

begin

ALU_function: process (operand1, operand2, command)

variable a, b : integer;
variable temp_result : bit_32;

begin
case command is

when add | subtract | multiply | divide =>
a := bits_to_int(operand1);
b := bits_to_int(operand2);

when incr1 =>
a := bits_to_int(operand1);
b := 1;

when others =>
null;

end case;
case command is

when disable =>
null;

when pass1 =>
temp_result := operand1;

when log_and =>
 temp_result := operand1 and operand2;

when log_or =>
temp_result := operand1 or operand2;

when log_xor =>
temp_result := operand1 xor operand2;

when log_mask =>
temp_result := operand1 and not operand2;

when add | incr1 =>
if b > 0 and a > integer'high-b then -- positive overflow

int_to_bits(((integer'low+a)+b)-integer'high-1, temp_result);
cc_V <= '1' after Tpd;

elsif b < 0 and a < integer'low-b then -- negative overflow
 int_to_bits(((integer'high+a)+b)-integer'low+1, temp_result);
cc_V <= '1' after Tpd;

else
int_to_bits(a + b, temp_result);
cc_V <= '0' after Tpd;

end if;
when subtract =>

if b < 0 and a > integer'high+b then -- positive overflow
int_to_bits(((integer'low+a)-b)-integer'high-1, temp_result);
cc_V <= '1' after Tpd;

elsif b > 0 and a < integer'low+b then -- negative overflow
int_to_bits(((integer'high+a)-b)-integer'low+1, temp_result);
cc_V <= '1' after Tpd;

else
int_to_bits(a - b, temp_result);
cc_V <= '0' after Tpd;

end if;

Figure 7-24 (continued).

7. Sample Models: The DP32 Processor 7-33

when multiply =>
if ((a>0 and b>0) or (a<0 and b<0)) -- result positive

and (abs a > integer'high / abs b) then
-- positive overflow
int_to_bits(integer'high, temp_result);
cc_V <= '1' after Tpd;

elsif ((a>0 and b<0) or (a<0 and b>0)) -- result negative
and ((- abs a) < integer'low / abs b) then

-- negative overflow
int_to_bits(integer'low, temp_result);
cc_V <= '1' after Tpd;

else
int_to_bits(a * b, temp_result);
cc_V <= '0' after Tpd;

end if;
when divide =>

if b=0 then
if a>=0 then -- positive overflow

int_to_bits(integer'high, temp_result);
else

int_to_bits(integer'low, temp_result);
end if;
cc_V <= '1' after Tpd;

else
int_to_bits(a / b, temp_result);
cc_V <= '0' after Tpd;

end if;
end case;
if command /= disable then

result <= temp_result after Tpd;
else

result <= null after Tpd;
end if;
cc_Z <= bool_to_bit(temp_result = X"00000000") after Tpd;
cc_N <= bool_to_bit(temp_result(31) = '1') after Tpd;

end process ALU_function;

end behaviour;

Figure 7-24 (continued).

7-34 The VHDL Cookbook

use work.dp32_types.all;

entity cond_code_comparator is
generic (Tpd : Time := unit_delay);
port (cc : in CC_bits;

cm : in cm_bits;
result : out bit);

end cond_code_comparator;

architecture behaviour of cond_code_comparator is
alias cc_V : bit is cc(2);
alias cc_N : bit is cc(1);
alias cc_Z : bit is cc(0);
alias cm_i : bit is cm(3);
alias cm_V : bit is cm(2);
alias cm_N : bit is cm(1);
alias cm_Z : bit is cm(0);

begin
result <= bool_to_bit(((cm_V and cc_V)

or (cm_N and cc_N)
or (cm_Z and cc_Z)) = cm_i) after Tpd;

end behaviour;

Figure 7-25. Description of the condition code comparator.

7.6.9. Condition Code Comparator
The description of the condition code comparator is listed in Figure 7-25.

The cc input port contains the three condition code bits V, N and Z, and the
cm input contains the four condition mask bits derived from a DP32
instruction. Aliases for each of these bits are declared in the architecture
body. The behaviour is implemented by a single concurrent signal
assignment statement, which is sensitive to all of the input bits. Whenever
any of the bits changes value, the assignment will be resumed and a new
result bit computed.

7.6.10. Structural Architecture of the DP32
In this section, a structural architecture body for the DP32 processor,

corresponding to Figure 7-16, will be described. See Figure 7-26 for a listing
of the architecture body.

7. Sample Models: The DP32 Processor 7-35

use work.dp32_types.all, work.ALU_32_types.all;

architecture RTL of dp32 is

component reg_file_32_rrw
generic (depth : positive);
port (a1 : in bit_vector(depth-1 downto 0);

q1 : out bus_bit_32 bus;
en1 : in bit;
a2 : in bit_vector(depth-1 downto 0);
q2 : out bus_bit_32 bus;
en2 : in bit;
a3 : in bit_vector(depth-1 downto 0);
d3 : in bit_32;
en3 : in bit);

end component;

component mux2
generic (width : positive);
port (i0, i1 : in bit_vector(width-1 downto 0);

y : out bit_vector(width-1 downto 0);
sel : in bit);

end component;

component PC_reg
port (d : in bit_32;

q : out bus_bit_32 bus;
latch_en : in bit;
out_en : in bit;
reset : in bit);

end component;

component ALU_32
port (operand1 : in bit_32;

operand2 : in bit_32;
result : out bus_bit_32 bus;
cond_code : out CC_bits;
command : in ALU_command);

end component;

component cond_code_comparator
port (cc : in CC_bits;

cm : in cm_bits;
result : out bit);

end component;

component buffer_32
port (a : in bit_32;

b : out bus_bit_32 bus;
en : in bit);

end component;

component latch
generic (width : positive);
port (d : in bit_vector(width-1 downto 0);

q : out bit_vector(width-1 downto 0);
en : in bit);

end component;

Figure 7-26. Structural description of the DP32 processor.

7-36 The VHDL Cookbook

component latch_buffer_32
port (d : in bit_32;

q : out bus_bit_32 bus;
latch_en : in bit;
out_en : in bit);

end component;

component signext_8_32
port (a : in bit_8;

b : out bus_bit_32 bus;
en : in bit);

end component;

signal op1_bus : bus_bit_32;
signal op2_bus : bus_bit_32;
signal r_bus : bus_bit_32;

signal ALU_CC : CC_bits;
signal CC : CC_bits;

signal current_instr : bit_32;
alias instr_a1 : bit_8 is current_instr(15 downto 8);
alias instr_a2 : bit_8 is current_instr(7 downto 0);
alias instr_a3 : bit_8 is current_instr(23 downto 16);
alias instr_op : bit_8 is current_instr(31 downto 24);
alias instr_cm : cm_bits is current_instr(19 downto 16);

signal reg_a2 : bit_8;
signal reg_result : bit_32;

signal addr_latch_en : bit;
signal disp_latch_en : bit;
signal disp_out_en : bit;
signal d2_en : bit;
signal dr_en : bit;
signal instr_latch_en : bit;
signal immed_signext_en : bit;
signal ALU_op : ALU_command;
signal CC_latch_en : bit;
signal CC_comp_result : bit;
signal PC_latch_en : bit;
signal PC_out_en : bit;
signal reg_port1_en : bit;
signal reg_port2_en : bit;
signal reg_port3_en : bit;
signal reg_port2_mux_sel : bit;
signal reg_res_latch_en : bit;

begin -- architecture RTL of dp32

reg_file : reg_file_32_RRW
generic map (depth => 8)
port map (a1 => instr_a1, q1 => op1_bus, en1 => reg_port1_en,

a2 => reg_a2, q2 => op2_bus, en2 => reg_port2_en,
a3 => instr_a3, d3 => reg_result, en3 => reg_port3_en);

reg_port2_mux : mux2
generic map (width => 8)
port map (i0 => instr_a2, i1 => instr_a3, y => reg_a2,

sel => reg_port2_mux_sel);

Figure 7-26 (continued).

7. Sample Models: The DP32 Processor 7-37

reg_res_latch : latch
generic map (width => 32)
port map (d => r_bus, q => reg_result, en => reg_res_latch_en);

PC : PC_reg
port map (d => r_bus, q => op1_bus,

latch_en => PC_latch_en, out_en => PC_out_en,
reset => reset);

ALU : ALU_32
port map (operand1 => op1_bus, operand2 => op2_bus,

result => r_bus, cond_code => ALU_CC,
command => ALU_op);

CC_reg : latch
generic map (width => 3)
port map (d => ALU_CC, q => CC, en => CC_latch_en);

CC_comp : cond_code_comparator
port map (cc => CC, cm => instr_cm, result => CC_comp_result);

dr_buffer : buffer_32
port map (a => d_bus, b => r_bus, en => dr_en);

d2_buffer : buffer_32
port map (a => op2_bus, b => d_bus, en => d2_en);

disp_latch : latch_buffer_32
port map (d => d_bus, q => op2_bus,

latch_en => disp_latch_en, out_en => disp_out_en);

addr_latch : latch
generic map (width => 32)
port map (d => r_bus, q => a_bus, en => addr_latch_en);

instr_latch : latch
generic map (width => 32)
port map (d => r_bus, q => current_instr, en => instr_latch_en);

immed_signext : signext_8_32
port map (a => instr_a2, b => op2_bus, en => immed_signext_en);

Figure 7-26 (continued).

The architecture refers to the items declared in the packages dp32_types
and ALU_32_types, so a use clause for these packages is included. The
declaration section of the architecture contains a number of component
declarations, corresponding to the entity declarations listed in Sections 7.6.1
to 7.6.9. Instances of these components are subsequently used to construct
the processor architecture.

Next, a number of signals are declared, corresponding to the buses
illustrated in Figure 7-16. These are followed by further signal declarations
for control signals not shown in the figure. The control signals are used to
connect the data path component instances with the control unit
implemented in the block called controller.

7-38 The VHDL Cookbook

controller : block

port (phi1, phi2 : in bit;
reset : in bit;
opcode : in bit_8;
read, write, fetch : out bit;
ready : in bit;
addr_latch_en : out bit;
disp_latch_en : out bit;
disp_out_en : out bit;
d2_en : out bit;
dr_en : out bit;
instr_latch_en : out bit;
immed_signext_en : out bit;
ALU_op : out ALU_command;
CC_latch_en : out bit;
CC_comp_result : in bit;
PC_latch_en : out bit;
PC_out_en : out bit;
reg_port1_en : out bit;
reg_port2_en : out bit;
reg_port3_en : out bit;
reg_port2_mux_sel : out bit;
reg_res_latch_en : out bit);

port map (phi1 => phi1, phi2 => phi2,
reset => reset,
opcode => instr_op,
read => read, write => write, fetch => fetch,
ready => ready,
addr_latch_en => addr_latch_en,
disp_latch_en => disp_latch_en,
disp_out_en => disp_out_en,
d2_en => d2_en,
dr_en => dr_en,
instr_latch_en => instr_latch_en,
immed_signext_en => immed_signext_en,
ALU_op => ALU_op,
CC_latch_en => CC_latch_en,
CC_comp_result => CC_comp_result,
PC_latch_en => PC_latch_en, PC_out_en => PC_out_en,
reg_port1_en => reg_port1_en,
reg_port2_en => reg_port2_en,
reg_port3_en => reg_port3_en,
reg_port2_mux_sel => reg_port2_mux_sel,
reg_res_latch_en => reg_res_latch_en);

Figure 7-26 (continued).

7. Sample Models: The DP32 Processor 7-39

begin -- block controller

state_machine: process

type controller_state is
(resetting, fetch_0, fetch_1, fetch_2, decode,

disp_fetch_0, disp_fetch_1, disp_fetch_2,
execute_0, execute_1, execute_2);

variable state, next_state : controller_state;
variable write_back_pending : boolean;

type ALU_op_select_table is
array (natural range 0 to 255) of ALU_command;

constant ALU_op_select : ALU_op_select_table :=
(16#00# => add,

16#01# => subtract,
16#02# => multiply,
16#03# => divide,
16#10# => add,
16#11# => subtract,
16#12# => multiply,
16#13# => divide,
16#04# => log_and,
16#05# => log_or,
16#06# => log_xor,
16#07# => log_mask,
others => disable);

Figure 7-26 (continued).

The control unit is a state machine, whose behaviour is described by a
single process called state_machine. The controller sequences through the
states listed in the declaration of the type controller_state to fetch, decode and
execute instructions. The variable state holds the controller state for the
current clock cycle, and next_state is set to determine the state for the next
clock cycle. Write_back_pending is a flag used to schedule a register write
operation for the next clock cycle. The constant ALU_op_select is a lookup
table used to determine the ALU function from the instruction op-code.

7-40 The VHDL Cookbook

begin -- process state_machine
--
-- start of clock cycle
--
wait until phi1 = '1';
--
-- check for reset
--
if reset = '1' then

state := resetting;
--
-- reset external bus signals
--
read <= '0' after Tpd;
fetch <= '0' after Tpd;
write <= '0' after Tpd;
--
-- reset dp32 internal control signals
--
addr_latch_en <= '0' after Tpd;
disp_latch_en <= '0' after Tpd;
disp_out_en <= '0' after Tpd;
d2_en <= '0' after Tpd;
dr_en <= '0' after Tpd;
instr_latch_en <= '0' after Tpd;
immed_signext_en <= '0' after Tpd;
ALU_op <= disable after Tpd;
CC_latch_en <= '0' after Tpd;
PC_latch_en <= '0' after Tpd;
PC_out_en <= '0' after Tpd;
reg_port1_en <= '0' after Tpd;
reg_port2_en <= '0' after Tpd;
reg_port3_en <= '0' after Tpd;
reg_port2_mux_sel <= '0' after Tpd;
reg_res_latch_en <= '0' after Tpd;
--
-- clear write-back flag
--
write_back_pending := false;
--

else -- reset = '0'
state := next_state;

end if;

Figure 7-26 (continued).

The body of the state machine process starts by waiting for the leading
edge of the phi1 clock, indicating the start of a clock cycle. When this
occurs, the reset signal is checked, and if it is asserted the controller state is
set to resetting and all control outputs are negated. On the other hand, if
reset is negated, the controller state is updated to the previously computed
next state.

7. Sample Models: The DP32 Processor 7-41

--
-- dispatch action for current state
--
case state is

when resetting =>
--
-- check for reset going inactive at end of clock cycle
--
wait until phi2 = '0';
if reset = '0' then

next_state := fetch_0;
else

next_state := resetting;
end if;
--

when fetch_0 =>
--
-- clean up after previous execute cycles
--
reg_port1_en <= '0' after Tpd;
reg_port2_mux_sel <= '0' after Tpd;
reg_port2_en <= '0' after Tpd;
immed_signext_en <= '0' after Tpd;
disp_out_en <= '0' after Tpd;
dr_en <= '0' after Tpd;
read <= '0' after Tpd;
d2_en <= '0' after Tpd;
write <= '0' after Tpd;
--
-- handle pending register write-back
--
if write_back_pending then

reg_port3_en <= '1' after Tpd;
end if;
--
-- enable PC via ALU to address latch
--
PC_out_en <= '1' after Tpd; -- enable PC onto op1_bus
ALU_op <= pass1 after Tpd; -- pass PC to r_bus
--
wait until phi2 = '1';
addr_latch_en <= '1' after Tpd; -- latch instr address
wait until phi2 = '0';
addr_latch_en <= '0' after Tpd;
--
next_state := fetch_1;
--

Figure 7-26 (continued).

The remainder of the state machine body is a case statement using the
current state to determine the action to be performed for this clock cycle. If
the processor is being reset (in the resetting state), it waits until the trailing
edge of phi2 at the end of the clock cycle, and checks the reset signal again.
If reset has been negated, the processor can start fetching instructions, so
the next state is set to fetch_0, otherwise it is is set to resetting again.

7-42 The VHDL Cookbook

when fetch_1 =>
--
-- clear pending register write-back
--
if write_back_pending then

reg_port3_en <= '0' after Tpd;
write_back_pending := false;

end if;
--
-- increment PC & start bus read
--
ALU_op <= incr1 after Tpd; -- increment PC onto r_bus
fetch <= '1' after Tpd;
read <= '1' after Tpd;
--
wait until phi2 = '1';
PC_latch_en <= '1' after Tpd; -- latch incremented PC
wait until phi2 = '0';
PC_latch_en <= '0' after Tpd;
--
next_state := fetch_2;
--

when fetch_2 =>
--
-- cleanup after previous fetch_1
--
PC_out_en <= '0' after Tpd; -- disable PC from op1_bus
ALU_op <= disable after Tpd; -- disable ALU from r_bus

--
-- latch current instruction
--
dr_en <= '1' after Tpd; -- enable fetched instr onto r_bus
--
wait until phi2 = '1';
instr_latch_en <= '1' after Tpd; -- latch fetched instr from r_bus
wait until phi2 = '0';
instr_latch_en <= '0' after Tpd;
--
if ready = '1' then

next_state := decode;
else

next_state := fetch_2; -- extend bus read
end if;

Figure 7-26 (continued).

The processor fetches an instruction from memory by sequencing
through the states fetch_0, fetch_1 and fetch_2 on successive clock cycles.
Figure 7-27 shows the timing of control signals for an instruction fetch.
The fetch_0 processor cycle corresponds to a Ti cycle on the memory bus.
During this cycle, the PC register output is enabled onto the op1 bus, and
the ALU function set to pass1. The ALU passes the PC value through to the
result bus, and it is latched into the memory address register during the
second half of the cycle. The PC value is thus set up on the memory address
bus. The fetch_1 cycle corresponds to a memory bus T1 cycle. The controller
starts the memory transaction by asserting fetch and read. At the same
time, it changes the ALU function code to incr1, causing the ALU to place

7. Sample Models: The DP32 Processor 7-43

phi1

phi2

valid addressa_bus

fetch

d_bus

ready

valid data in

fetch_0 fetch_1 fetch_2 decode

PC_out_en

addr_latch_en

PC_latch_en

ALU_op
pass1 incr1 disable

read

dr_en

instr_latch_en

Figure 7-27. Timing for DP32 instruction fetch.

the incremented PC value on the result bus. This is then latched back into
the PC register during the second half of the cycle. The fetch_2 processor
cycle corresponds to the memory bus T2 cycle, during which data is
returned to the processor from the memory. The controller disables the PC
from the op1 bus and the ALU from the result bus, and enables the data
input buffer to accept memory data onto the result bus. This data is latched
into the current instruction register during the second half of the cycle. If
ready is false, the processor repeats the F2 cycle, otherwise it completes the
bus transaction and moves to the decode state, corresponding to a bus Ti
cycle.

Returning to the VHDL description, we see that the fetch_0 branch of the
case statement implements the first cycle of an instruction fetch. Firstly,
any signals left asserted from previous cycle are negated again. Next, any
register write scheduled from the previously executed instruction is

7-44 The VHDL Cookbook

when decode =>
--
-- terminate bus read from previous fetch_2
--
fetch <= '0' after Tpd;
read <= '0' after Tpd;
dr_en <= '0' after Tpd; -- disable fetched instr from r_bus
--
-- delay to allow decode logic to settle
--
wait until phi2 = '0';
--
-- next state based on opcode of currect instruction
--
case opcode is

when op_add | op_sub | op_mul | op_div
| op_addq | op_subq | op_mulq | op_divq
| op_land | op_lor | op_lxor | op_lmask
| op_ldq | op_stq =>

next_state := execute_0;
when op_ld | op_st =>

next_state := disp_fetch_0; -- fetch offset
when op_br | op_bi =>

if CC_comp_result = '1' then -- if branch taken
next_state := disp_fetch_0; -- fetch displacement

else -- else
next_state := execute_0; -- increment PC

-- past displacement
end if;

when op_brq | op_biq =>
if CC_comp_result = '1' then -- if branch taken

next_state := execute_0; -- add immed
-- displacement to PC

else -- else
next_state := fetch_0; -- no action needed

end if;
when others =>

assert false report "illegal instruction" severity warning;
next_state := fetch_0; -- ignore and carry on

end case; -- op
--

Figure 7-26 (continued).

handled. (This will be described fully below.) Then the PC register output
is enabled and the ALU function set, as described above. The process then
waits until the leading edge of phi2, by which time the PC should be valid on
the result bus. It pulses the address latch enable signal by asserting it,
waiting until the trailing edge of phi2, then negating the signal. Finally,
the next state variable is set to fetch_1, so that when the process resumes in
the next cycle, it will move to this state.

When the process is in state fetch_1, it starts the cycle by terminating any
register write back that may have been pending. It then changes the ALU
function code to increment the PC value, and starts the bus transaction. In
the second half of the cycle, when phi2 is asserted, the PC latch enable is
asserted to store the incremented PC value. The next state is then set to

7. Sample Models: The DP32 Processor 7-45

fetch_2.
The last cycle of the instruction fetch is state fetch_2. The controller

disables the PC register and ALU outputs, and enables the buffer between
the memory data bus and the result bus. During the second half of the
cycle, it asserts the instruction register latch enable. At the end of the
cycle, when phi2 has returned to '0', the ready input is checked. If it is
asserted, the state machine can continue to the decode state in the next
cycle, otherwise the fetch_2 state must be repeated.

In the decode state, the controller terminates the previous bus
transaction and disables the bus input buffer. It then delays for the rest of
the cycle, modeling the time required for decode logic to analyse the current
instruction and for the condition code comparator to stabilize. The op-code
part of the instruction is then examined to determine the next state. For
arithmetic, logical and quick load/store instructions, the next state is
execute_0, in which the instruction is interpreted. For load/store
instructions with a long displacement, a bus transaction must be
performed to read the displacement, so the next state is disp_fetch_0. For
branch instructions with a long displacement, the fetch is only required if
the branch is to be taken, in which case the next state is disp_fetch_0.
Otherwise the next state is execute_0, in which the PC will be incremented
past the displacement stored in memory. For branch quick instructions,
the displacement is encoded in the instruction. If the branch is taken, the
next state is execute_0 to update the PC. Otherwise no further action is
needed to interpret the instruction, so the next state is fetch_0. If any other
op-code is detected, an assertion is used to report the illegal instruction.
The instruction is ignored and execution continues with the next
instruction, so the next state is fetch_0.

7-46 The VHDL Cookbook

when disp_fetch_0 =>
--
-- enable PC via ALU to address latch
--
PC_out_en <= '1' after Tpd; -- enable PC onto op1_bus
ALU_op <= pass1 after Tpd; -- pass PC to r_bus
--
wait until phi2 = '1';
addr_latch_en <= '1' after Tpd; -- latch displacement address
wait until phi2 = '0';
addr_latch_en <= '0' after Tpd;
--
next_state := disp_fetch_1;
--

when disp_fetch_1 =>
--
-- increment PC & start bus read
--
ALU_op <= incr1 after Tpd; -- increment PC onto r_bus
fetch <= '1' after Tpd;
read <= '1' after Tpd;
--
wait until phi2 = '1';
PC_latch_en <= '1' after Tpd; -- latch incremented PC
wait until phi2 = '0';
PC_latch_en <= '0' after Tpd;
--
next_state := disp_fetch_2;
--

when disp_fetch_2 =>
--
-- cleanup after previous disp_fetch_1
--
PC_out_en <= '0' after Tpd; -- disable PC from op1_bus
ALU_op <= disable after Tpd; -- disable ALU from r_bus
--
-- latch displacement
--
wait until phi2 = '1';
disp_latch_en <= '1' after Tpd; -- latch fetched disp from r_bus
wait until phi2 = '0';
disp_latch_en <= '0' after Tpd;
--
if ready = '1' then

next_state := execute_0;
else

next_state := disp_fetch_2; -- extend bus read
end if;

Figure 7-26 (continued).

7. Sample Models: The DP32 Processor 7-47

phi1

phi2

disp_
fetch_0

ALU_op

addr_latch_en

disp address
a_bus

fetch

d_bus

ready

valid data in

read

disp_latch_en

execute_0

PC_out_en

PC_latch_en

pass1 incr1 disable

disp_
fetch_1

disp_
fetch_2

Figure 7-28. Timing for DP32 displacement fetch.

The sequence for fetching a displacement from memory is similar to
that for fetching the instruction word. The only difference is that instead of
the read word being enabled onto the result bus and latched into the
instruction register, the word is simply latched from the memory data bus
into the displacement latch. The timing for a displacement fetch is shown
in Figure 7-28. The sequence consists of the processor states disp_fetch_0,
disp_fetch_1 and one or more repetitions of disp_fetch_2, corresponding to bus
states Ti, T1 and T2 respectively. This sequence is always followed by the
first execute state, corresponding to the bus Ti state at the end of the bus
transaction. In the VHDL description, the case branches for disp_fetch_0,
disp_fetch_1 and disp_fetch_2 implement this behaviour.

7-48 The VHDL Cookbook

when execute_0 =>
--
-- terminate bus read from previous disp_fetch_2
--
fetch <= '0' after Tpd;
read <= '0' after Tpd;
--
case opcode is

when op_add | op_sub | op_mul | op_div
| op_addq | op_subq | op_mulq | op_divq
| op_land | op_lor | op_lxor | op_lmask =>

-- enable r1 onto op1_bus
reg_port1_en <= '1' after Tpd;
if opcode = op_addq or opcode = op_subq

or opcode = op_mulq or opcode = op_divq then
-- enable i8 onto op2_bus
immed_signext_en <= '1' after Tpd;

else
-- select a2 as port2 address
reg_port2_mux_sel <= '0' after Tpd;
-- enable r2 onto op2_bus
reg_port2_en <= '1' after Tpd;

end if;
-- select ALU operation
ALU_op <= ALU_op_select(bits_to_int(opcode)) after Tpd;
--
wait until phi2 = '1';
-- latch cond codes from ALU
CC_latch_en <= '1' after Tpd;
-- latch result for reg write
reg_res_latch_en <= '1' after Tpd;
wait until phi2 = '0';
CC_latch_en <= '0' after Tpd;
reg_res_latch_en <= '0' after Tpd;
--
next_state := fetch_0; -- execution complete
write_back_pending := true; -- register write_back required
--

when op_ld | op_st | op_ldq | op_stq =>
-- enable r1 to op1_bus
reg_port1_en <= '1' after Tpd;
if opcode = op_ld or opcode = op_st then

-- enable displacement to op2_bus
disp_out_en <= '1' after Tpd;

else
-- enable i8 to op2_bus
immed_signext_en <= '1' after Tpd;

end if;
ALU_op <= add after Tpd; -- effective address to r_bus
--
wait until phi2 = '1';
addr_latch_en <= '1' after Tpd; -- latch effective address
wait until phi2 = '0';
addr_latch_en <= '0' after Tpd;
--
next_state := execute_1;
--

Figure 7-26 (continued).

7. Sample Models: The DP32 Processor 7-49

phi1

phi2

execute_0 fetch_0

reg_port1_en

reg_port2_en

reg_port3_en

reg_port2_
mux_sel

ALU_op
op

CC_latch_en

reg_res_
latch_en

Figure 7-29. Execution of register/register operations.

Execution of instructions starts in state execute_0. The first action is to
negate the bus control signals that may have been active from a previous
displacement fetch sequence. Subsequent action depends on the instruction
being executed, so a nested case statement is used, with the op-code as the
selection expression.

Arithmetic and logic instructions only require one cycle to exectute. The
processor timing for the case where both operands are in registers is shown
in Figure 7-29. The address for register port 1 is derived from the r1 field of
the current instruction, and this port output is enabled onto the op1 bus.
The multiplexor for the address for register port 2 is set to select field r2 of
the current instruction, and this port output is enabled onto the op2 bus.
The ALU function code is set according to the op-code of the current
instruction, and the ALU output is placed on the result bus. During the
second half of the cycle, when the ALU result and condition codes are
stable, the register result latch and condition code latch are enabled,
capturing the results of the operation. In the next cycle, the register read
ports and the latches are are disabled, and the register write port is enabled
to write the result back into the destination register. This write back
operation overlaps the first cycle of the next instruction fetch. The result
register address, derived from the r3 field of the current instruction, is not
overwritten until the end of the next instruction fetch, so the write back is
performed to the correct register.

7-50 The VHDL Cookbook

when op_br | op_bi | op_brq | op_biq =>
if CC_comp_result = '1' then

if opcode = op_br then
PC_out_en <= '1' after Tpd;
disp_out_en <= '1' after Tpd;

elsif opcode = op_bi then
reg_port1_en <= '1' after Tpd;
disp_out_en <= '1' after Tpd;

elsif opcode = op_brq then
PC_out_en <= '1' after Tpd;
immed_signext_en <= '1' after Tpd;

else -- opcode = op_biq
reg_port1_en <= '1' after Tpd;
immed_signext_en <= '1' after Tpd;

end if;
ALU_op <= add after Tpd;

else
assert opcode = op_br or opcode = op_bi

report "reached state execute_0 "
& "when brq or biq not taken"

severity error;
PC_out_en <= '1' after Tpd;
ALU_op <= incr1 after Tpd;

end if;
--
wait until phi2 = '1';
PC_latch_en <= '1' after Tpd; -- latch incremented PC
wait until phi2 = '0';
PC_latch_en <= '0' after Tpd;
--
next_state := fetch_0;
--

when others =>
null;

end case; -- op
--

Figure 7-26 (continued).

The timing for arithmetic and logical instructions where the second
operand is an immediate constant is shown in Figure 7-30. The difference
is that register port 2 is not enabled; instead, the sign extension buffer is
enabled. This converts the 8-bit signed i8 field of the current instruction to a
32-bit signed integer on the op2 bus.

Looking again at the exectute_0 branch of the state machine, the nested
case statement contains a branch for arithmetic and logical instructions.
It firstly enables port 1 of the register file, and then enables either port 2 or
the sign extension buffer, depending on the op-code. The lookup table
ALU_op_select is indexed by the op-code to determine the ALU function code.
The process then waits until the leading edge of phi2, and asserts the
register result and condition code latch enables while phi2 is '1'. At the end
of the cycle, the next state is set to fetch_0, and the write back pending flag is
set. During the subsequent instruction fetch, this flag is checked (in the
fetch_0 branch of the outer case statement). The register port 3 write enable
control signal is asserted during the fetch_0 state, and then at the beginning
of the fetch_1 state it is negated and the flag cleared.

7. Sample Models: The DP32 Processor 7-51

phi1

phi2

reg_port1_en

reg_port3_en

ALU_op
op

CC_latch_en

reg_res_
latch_en

immed_
signext_en

execute_0 fetch_0

Figure 7-30. Execution of register/immed operations.

phi1

phi2

execute_0

PC_out_en

ALU_op
add

PC_latch_en

immed_
signext_en

phi1

phi2

execute_0

reg_port1_en

ALU_op
add

PC_latch_en

immed_
signext_en

(a) (b)

Figure 7-31. Execution of quick branch with branch taken.

7-52 The VHDL Cookbook

when execute_1 =>
--
-- opcode is load or store instruction.
-- cleanup after previous execute_0
--
reg_port1_en <= '0' after Tpd;
if opcode = op_ld or opcode = op_st then

-- disable displacement from op2_bus
disp_out_en <= '0' after Tpd;

else
-- disable i8 from op2_bus
immed_signext_en <= '0' after Tpd;

end if;
ALU_op <= add after Tpd; -- disable ALU from r_bus
--
-- start bus cycle
--
if opcode = op_ld or opcode = op_ldq then

fetch <= '0' after Tpd; -- start bus read
read <= '1' after Tpd;

else -- opcode = op_st or opcode = op_stq
reg_port2_mux_sel <= '1' after Tpd; -- address a3 to port2
reg_port2_en <= '1' after Tpd; -- reg port2 to op2_bus
d2_en <= '1' after Tpd; -- enable op2_bus to d_bus buffer
write <= '1' after Tpd; -- start bus write

end if;
--
next_state := execute_2;
--

when execute_2 =>
--
-- opcode is load or store instruction.
-- for load, enable read data onto r_bus
--
if opcode = op_ld or opcode = op_ldq then

dr_en <= '1' after Tpd; -- enable data to r_bus
wait until phi2 = '1';
-- latch data in reg result latch
reg_res_latch_en <= '1' after Tpd;
wait until phi2 = '0';
reg_res_latch_en <= '0' after Tpd;
write_back_pending := true; -- write-back pending

end if;
--
next_state := fetch_0;
--

end case; -- state
end process state_machine;

end block controller;

end RTL;

Figure 7-26 (continued).

7. Sample Models: The DP32 Processor 7-53

phi1

phi2

execute_0

PC_out_en

ALU_op
incr1

PC_latch_en

Figure 7-32. Execution of branch with branch not taken.

phi1

phi2

ALU_op

execute_0

PC_out_en

PC_latch_en

add

disp_out_en

phi1

phi2

ALU_op

execute_0

reg_port1_en

PC_latch_en

add

disp_out_en

(a) (b)

Figure 7-33. Execution of branch with branch taken.

We now move on to the execution of branch instructions. We saw
previously that for quick branches, when the branch is not taken execution
completes after the decode state. When the branch is taken a single execute
cycle is required to update the PC with the effective address. The timing for
this case is shown in Figure 7-31. Figure 7-31(a) shows an ordinary quick
branch, in which the PC is enabled onto the op1 bus. Figure 7-31(b) shows
an indexed quick branch, in which the index register, read from register
file port 1 is enabled onto the op1 bus. The sign extension buffer is enabled
to place the immediate displacement on the op2 bus, and the ALU function
code is set to add the two values, forming the effective address of the branch
on the result bus. This is latched back into the PC register during the
second half of the execution cycle.

For branches with a long displacement, a single execution cycle is

7-54 The VHDL Cookbook

always required. If the branch is not taken, the PC must be incremented to
point to the instruction after the displacment. The timing for this is shown
in Figure 7-32. The PC is enabled onto the op1 bus, and the ALU function is
set to incr1. This increments the value and places it on the result bus. Then
during the second half of the cycle, the new value is latched back into the
PC register.

For long displacement branches where the branch is taken, the PC must
be updated with the effective address. Figure 7-33(a) shows the timing for
an ordinary branch, in which the PC is enabled onto the op1 bus.
Figure 7-33(b) shows the timing for an indexed branch, in which the index
register is enabled from register port 1 onto the op1 bus. The displacement
register output is enabled onto the op2 bus, and the ALU function is set to
add, to add the displacement to the base address, forming the effective
address on the result bus. This is latched back into the PC register during
the second half of the cycle.

The VHDL description implements the execution of a branch instruction
as part of the nested case statement for the execute_0 state. The process
checks the result bit from the condition code comparator. If it is set, the
branch is taken, so the base address and displacement are enabled
(depending on the type of branch), and the ALU function code set to add.
Otherwise, if the condition code comparator result is clear, the branch is
not taken. This should only be the case for long branches, since quick
branches should never get to the execute_0 state. An assertion statement is
used to verify this condition. For long branches which are not taken, the PC
is enabled onto the op1 bus and the ALU function code set to incr1 to
increment the value past the displacement in memory. The PC latch
enable signal is then pulsed when phi2 changes to '1'. Finally, the next
state is set to fetch_0, so the processor will continue with the next
instruction.

The remaining instructions to be considered are the load and store
instructions. These all take three cycles to execute, since a bus transaction
is required to transfer the data to or from the memory. For long
displacement loads and stores, the displacement has been previously
fetched into the displacement register. For the quick forms, the immediate
displacement in the instruction word is used.

Figure 7-34 shows the timing for execution of load and quick load
instructions. The base address register is read from register file port 1 and
enabled onto the op1 bus. For long displacement loads, the previously
fetched displacement is enabled onto the op2 bus, and for quick loads, the
sign extended immediate displacement is enabled onto the op2 bus. The
ALU function code is set to add, to form the effective address on the result
bus, and this is latched into the memory bus address register during the
second half of the first execute cycle. During the next two cycles the
controller performs a memory read transaction, with the fetch signal held
negated. The data from the data bus is enabled onto the result bus through
the connecting buffer, and latched into the register result latch. This value
is then written back to the register file during the first cycle of the
subsequent instruction fetch.

7. Sample Models: The DP32 Processor 7-55

phi1

phi2

reg_port1_en

reg_port3_en

ALU_op

addr_latch_en

reg_res_
latch_en

a_bus

fetch

d_bus

ready

read

execute_0

add

disp_out_en
or immed_
signext_en

load address

disable

dr_en

valid data in

execute_1 execute_2 fetch_0

Figure 7-34. Execution of load instructions.

7-56 The VHDL Cookbook

The timing for execution of store and quick store instructions is shown
in Figure 7-35. As with load instructions, the base address and
displacement are added, and the effective address is latched in the memory
bus address register. During the next two cycles the controller performs a
bus write transaction. The multiplexor for the register file port 2 address is
set to select the r3 field of the instruction, which specifies the register to be
stored, and the port 2 output is enabled onto the op2 bus. The buffer between
the op2 bus and the memory data bus is enabled to transmit the data to the
memory. Execution of the instruction completes at the end of the bus
transaction.

Returning to the VHDL description, the first cycle of execution of load
and store instructions is included as a branch of the nested case in the
execute_0 state. The base address register output port is enabled, and either
the displacement latch output or the sign extension buffer is enabled,
depending on the instruction type. The ALU function code is set to add the
two to form the effective address. The process then waits until phi2 changes
to '1', indicating the second half of the cycle, and pulses the address latch
enable. The next state is then set to execute_1 to continue execution of the
instruction.

In state execute_1, the process firstly removes the base address,
displacement and effective address from the DP32 internal buses, then
starts a memory bus transaction. For load instructions, the fetch signal is
negated and the read signal is asserted. For store instructions, the source
register value is enabled onto the op2 bus, the memory data bus output
buffer is enabled, and the write signal is aserted. The next state variable is
then set to execute_2 for the next cycle.

In state execute_2, for load instructions, the memory data bus input
buffer is enabled to transmit the data onto the result bus. The process then
waits until phi2 is '1', in the second half of the cycle, and pulses the enable
for the register result latch. The write back pending flag is then set to
schedule the destination register write during the next instruction fetch
cycle. For both load and store instructions, the next state is fetch_0. All
control signals set during the execute_1 state will be returned to their
negated values in the fetch_0 state.

The test bench described in Section 7.5 can be used to test the register
transfer architecture of the DP32. This is done using an alternate
configuration, replacing the behavioural architecture in the test bench with
the register transfer architecture. Figure 7-36 shows such a configuration.
The entity bindings for the clock generator and memory are the same,
using the behavioural architectures, but the processor component instance
uses the rtl architecture of the dp32 entity. This binding indication is
followed by a configuration for that architecture, binding the entities
described in Sections 7.6.1–7.6.9 to the component instances contained in
the architecture. The newly configured description can be simulated using
the same test programs as before, and the results compared to verify that
they implement the same behaviour.

7. Sample Models: The DP32 Processor 7-57

phi1

phi2

reg_port1_en

ALU_op

addr_latch_en

a_bus

d_bus

ready

read

execute_0

add

disp_out_en
or immed_
signext_en

store address

disable

valid data out

reg_port2_
mux_sel

reg_port2_en

d2_en

fetch

write

execute_1 execute_2

Figure 7-35. Execution of store instructions.

7-58 The VHDL Cookbook

use work.dp32_types.all;

configuration dp32_rtl_test of dp32_test is

for structure
for cg : clock_gen

use entity work.clock_gen(behaviour)
generic map (Tpw => 8 ns, Tps => 2 ns);

end for;
for mem : memory

use entity work.memory(behaviour);
end for;
for proc : dp32

use entity work.dp32(rtl);
for rtl

for all : reg_file_32_rrw
use entity work.reg_file_32_rrw(behaviour);

end for;
for all : mux2

use entity work.mux2(behaviour);
end for;
for all : latch

use entity work.latch(behaviour);
end for;
for all : PC_reg

use entity work.PC_reg(behaviour);
end for;
for all : ALU_32

use entity work.ALU_32(behaviour);
end for;
for all : cond_code_comparator

use entity work.cond_code_comparator(behaviour);
end for;
for all : buffer_32

use entity work.buffer_32(behaviour);
end for;
for all : latch_buffer_32

use entity work.latch_buffer_32(behaviour);
end for;
for all : signext_8_32

use entity work.signext_8_32(behaviour);
end for;

end for;
end for;

end for;

end dp32_rtl_test;

Figure 7-36. Configuration using register transfer architecture of DP32.

