
Региони

2/33

Региони

• Програмска парадигма за приступ критичној

секцији

• Увођење посебне синтаксе за експлицитно

означавање критичних секција

• Обезбеђивање међусобног искључивања

процеса

• Условни критични регион је критични регион

који поред обезбеђивања међусобног

искључивања има и механизам за

синхронизацију процеса преко (опционих)

await наредби

3/33

Региони

Декларација ресурса одређеног типа се обавља као

и декларација сваке друге дељене променљиве:

res: shared type;

Условни критични регион се синтаксно дефинише на

следећи начин (await наредба је опциона и ако се

изостави добијамо обичан критични регион):

region res do

begin

...

[await(condition);]

...

end;

Задаци

5/33

Условна синхронизација

Дат је упоредни програм на проширеном Pascal-у:

Жељени излаз програма је низ парова облика:

(0,0) (1,1) (2,4) ... (n,n2)

Отклонити временску зависност у датом програму
употребом условних критичних области.

procedure printpoints;

var i: integer;

begin

for i := 0 to n do

write('(', x, ', ', y, ')');

end

end;

procedure makepoints;

var i: integer;

begin

for i := 1 to n do

x := i;

y := i*i;

end

end;

6/33

Условна синхронизација

program graph;

const n = ...;

type point = record

x, y:integer;

full: boolean

end;

var p: shared point;

procedure makepoints;

var i: integer;

begin

for i := 1 to n do

region p do

begin

await(not p.full);

p.x := i;

p.y := i*i;

p.full := true

end

end;

7/33

Условна синхронизација

procedure printpoints;

var i: integer;

begin

for i := 0 to n do

region p do

begin

await(p.full);

write('(‘, p.x, ',’, p.y,')');

p.full := false

end

end;

begin

p.x := 0; p.y := 0; p.full := true;

cobegin

makepoints;

printpoints;

coend

end.

8/33

One-lane bridge problem

9/33

One-lane bridge problem

Аутомобили који долазе са севера и југа морају да
пређу реку преко моста. На мосту, на жалост,
постоји само једна возна трака. Значи, у било ком
тренутку мостом може да прође један или више
аутомобила који долазе из истог смера (али не и
из супротног смера). Написати алгоритам за
аутомобил са севера и аутомобил са југа који
долазе на мост, прелазе га и напуштају га са
друге стране.

10/33

One-lane bridge problem

var most: shared record

juzni, severni: integer

end

"u početku oba su nula"

"automobil sa juga"

begin

region most do

begin

await (severni = 0);

juzni := juzni + 1;

end

predji_most;

region most do

juzni := juzni - 1;

end

11/33

One-lane bridge problem

Усавршити решење претходног задатка тако да се
смер саобраћаја мења сваки пут након што га
пређе 10 аутомобила из истог смера, ако су за то
време један или више аутомобила чекали да га
пређу из супротног смера.

12/33

One-lane bridge problem

type smer = record; cekaju, prelaze, ispred: integer; end

var most: shared record juzni, severni: smer; end

"automobil sa juga"

begin

region most do

with juzni do

begin

cekaju := cekaju + 1;

await (severni.prelaze = 0 AND ispred < 10);

cekaju := cekaju - 1;

prelaze := prelaze + 1;

if (severni.cekaju > 0) then ispred := ispred + 1;

end;

predji_most;

region most do

with juzni do

begin

prelaze := prelaze - 1;

if (prelaze = 0) then severni.ispred := 0;

end

end

13/33

Dining philosophers problem

14/33

Dining philosophers problem

Пет филозофа седи око стола. Сваки филозоф
наизменично једе и размишља. Испред сваког
филозофа је тањир шпагета. Када филозоф
пожели да једе, он узима две виљушке које се
налазе уз његов тањир. На столу, међутим, има
само пет виљушки. Значи, филозоф може да једе
само када ниједан од његових суседа не једе.
Прокоментарисати дата решења описаног
проблема (исправност, праведност, ...).

15/33

Dining philosophers problem - 1

var viljuske: shared array [0..4] of 0..2;

procedure filozof (i:0..4);

var levi, desni: 0..4;

begin

levi := (i-1) mod 5;

desni := (i+1) mod 5;

repeat

razmisljaj;

region viljuske do

begin

await (viljuske[i] = 2);

viljuske[levi] := viljuske[levi] - 1;

viljuske[desni] := viljuske[desni] - 1;

end;

jedi;

region viljuske do

begin

viljuske[levi] := viljuske[levi] + 1;

viljuske[desni] := viljuske[desni] + 1;

end;

forever;

end;

16/33

Dining philosophers problem - 2

var viljuska : array [0..4] of shared boolean;

"filozof i"

repeat

razmisljaj;

region viljuska [i] do

region viljuska [(i+1) mod 5] do jedi;

forever

17/33

Dining philosophers problem - 3

var razmisljanje: shared array [0..4] of boolean;

"u početku sve je tacno"

"filozof i"

repeat

razmisljaj;

region razmisljanje do

begin

await (razmisljanje[(i-1) mod 5] AND razmisljanje[(i+1) mod 5]);

razmisljanje[i] := false;

end;

jedi;

region razmisljanje do razmisljanje[i] := true;

forever;

18/33

Readers – Writers problem

19/33

Readers – Writers problem

Група упоредих процеса који приступају заједничком
средству састоји се од читалаца Ri, i = 1,... ,m, и
писаца Wj, j = 1,...,n.

v: shared record r, w: integer end;

v1: shared integer;

begin

v.r := 0; v.w := 0;

cobegin R1; ... Rm; W1; ... Wn coend

end

За сва предложена решења одговорити да ли је:
Међусобно искључење осигурано.

Могуће узајамно блокирање читалаца и писаца.

Могуће узајамно блокирање писаца (при r=0).

Могуће 'изгладњивање' читалаца.

Могуће 'изгладњивање' писаца.

20/33

Readers – Writers problem - 1

"Ri"

repeat

region v do

begin

await (w = 0);

r := r + 1

end;

read;

region v do r := r - 1;

nekritične_operacije;

forever

"Wi"

repeat

region v do

begin

w := w + 1;

await (r = 0)

end;

write;

region v do w := w - 1;

nekritične_operacije;

forever

21/33

Readers – Writers problem - 2

"Ri"

repeat

region v do

begin

await (w = 0);

r := r + 1

end;

read;

region v do r := r - 1;

nekritične_operacije;

forever

"Wi"

repeat

region v do

begin

w := w + 1;

await ((r = 0) and (w = 1))

end;

write;

region v do w := w - 1;

nekritične_operacije;

forever

22/33

Readers – Writers problem - 3

var v: shared record

r, w: integer;

rturn: boolean

end;

begin

v.r := 0;

v.w := 0;

v.rturn := false;

cobegin

R1;

...

Rm;

W1;

...

Wn

coend

end;

23/33

Readers – Writers problem - 3

"Ri"

repeat

region v do

begin

if (rturn) then

begin

r := r + 1; await (w = 0)

end

else

begin

await (w = 0); r := r + 1

end;

end;

read;

region v do

begin

r := r - 1; rturn := false

end;

nekritične_operacije;

forever

24/33

Readers – Writers problem - 3

"Wi"

repeat

region v do

begin

if (rturn) then

begin

await (r = 0); w := w + 1

end

else

begin

w := w + 1; await (r = 0)

end;

end;

write;

region v do

begin

w := w - 1; rturn := true

end;

nekritične_operacije;

forever

25/33

Cigarette Smokers’ problem

26/33

Cigarette Smokers’ problem

Користећи условне критичне регионе написати
програм који решава проблем и симулира систем
“нервозних пушача” (Cigarette Smokers’ problem).
Постоји један агент и три нервозна пушача. Агент
поседује резерве три неопходна предмета за
лечење нервозе: папир, дуван и шибице. Један од
пушача има бесконачне залихе папира, други –
дувана, а трећи - шибица. Агент почиње тако што
два различита предмета ставља на сто, један по
један. Пушач, коме баш та два предмета фале,
узима их, завија и пали цигарету и ужива. Након
тога обавештава агента да је завршио, а агент
онда ставља два нова предмета на сто, итд.

27/33

Cigarette Smokers’ problem

program CigaretteSmokers(input, output);

type table = record

paper, tobacco, matches : boolean;

ok : boolean;

end;

var p: shared table;

28/33

Cigarette Smokers’ problem

procedure Agent;

var n : integer;

begin

while (true) do begin

n := RANDOM(0, 2);

region p do

begin

case n of

0: begin p.paper := false; p.tobacco := true; p.matches := true; end;

1: begin p.paper := true; p.tobacco := false; p.matches := true; end;

2: begin p.paper := true; p.tobacco := true; p.matches := false; end;

else ;

await(p.ok);

p.ok := false;

end;

end;

end;

29/33

Cigarette Smokers’ problem

procedure smoker_with_Matches;

begin

while (true) do

region p do

begin

await(p.paper and p.tobacco);

p.paper := false;

p.tobacco := false;

enjoy;

p.ok := true;

end;

end;

end;

30/33

Cigarette Smokers’ problem

procedure smoker_with_Tobacco;

begin

while (true) do

begin

region p do

begin

await(p.paper and p.matches);

p.paper := false;

p.matches := false;

enjoy;

p.ok := true;

end;

end;

end;

31/33

Cigarette Smokers’ problem

procedure smoker_with_Paper;

begin

while (true) do

begin

region p do

begin

await(p.matches and p.tobacco);

p.matches := false;

p.tobacco := false;

enjoy;

p.ok := true;

end;

end;

end;

32/33

Cigarette Smokers’ problem

begin

p.paper := false;

p.tobacco := false;

p.matches := false;

p.ok := false;

cobegin

Agent;

smoker_with_Paper;

smoker_with_Tobacco;

smoker_with_Matches;

coend;

end.

Питања?

Захарије Радивојевић, Сања Делчев

Електротехнички Факултет

Универзитет у Београду

zaki@etf.rs, sanjad@etf.rs

