
Računarska grafika 2

13M111RG2

5 Unity – programi za senčenje

Shader – struktura programa
(podsetnik)

Shader
Properties

SubShader
Pass

Pass

SubShader
Pass

Pass

Shader - sintaksa
Shader "name" {

[Properties] Subshaders [Fallback] [CustomEditor] }

• https://docs.unity3d.com/Manual/SL-Shader.html

• Properties - podaci (teksture, boja, ...) vidljivi u inspektoru mat.
– mogu podešavati i fiks. delove rend. pipel. – na primer Blend
– vrednosti se čuvaju (serijalizuju) od strane Unity Editora

• Subshaders + Fallback
– lista shader programa
– najmanje 1
– primenjuje se prvi koji može da radi na datom hardveru

• CustomEditor
– naziv klase koju treba koristiti u Unity Editoru za prikazivanje ovog shader-a

https://docs.unity3d.com/Manual/SL-Shader.html

Shader – sintaksa
Properties

Properties { Property [Property ...] }

name ("display name", Range (min, max)) = number
name ("display name", Float) = number
name ("display name", Int) = number

name ("display name", Color) = (number,number,number,number)
name ("display name", Vector) = (number,number,number,number)

name ("display name", 2D) = "defaulttexture" {}
name ("display name", Cube) = "defaulttexture" {}
name ("display name", 3D) = "defaulttexture" {}

"" "white" "black"
"gray" "bump" "red"

Shader – sintaksa
SubShader

Subshader { [Tags] [CommonState] Passdef [Passdef ...] }

• Definiše:
– oznake (tags)
– zajedničko stanje za sve prolaze (sintaksa ista kao za pojedinačne prolaze)
– prolaze

Shader – sintaksa
Pass

Pass { [Name and Tags] [State] }

• Stanja:
– Cull (Back | Front | Off)
– ZTest (Less | Greater | LEqual | GEqual | Equal | NotEqual | Always)
– ZWrite (On | Off)
– Offset OffsetFactor, OffsetUnits
– Blend srcBlendMode dstBlendMode, aSrcBlendMode aDstBlendMode
– ColorMask (RGB | A | 0 | any combination of R, G, B, A)

• Vrste prolaza
– "regularni"
– UsePass – koristi postojeći prolaz nekog drugog prog. za senčenje
– GrabPass – tekući sadržaj bafera slike čuva u teksturu dostupnu

narednim prolazima

Shader – primer sintakse
(podsetnik)

Shader "RG2/SimpleShader"
{

Properties
{

_MainTex ("Texture", 2D) = "white" {}
}
SubShader
{

Tags { "RenderType"="Opaque" }
LOD 100
Pass
{

CGPROGRAM
#pragma ...
#include ...

...
}
ENDCG

}
}

}

Shader – jednostavan program

Shader "RG2/SimpleShader"
{

Properties
{

_MainTex ("Texture", 2D) = "white" {}
}

SubShader
{

Tags { "RenderType"="Opaque" }

LOD 100

Pass
{

CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

Shader – jednostavan program

struct appdata
{

float4 vertex : POSITION;
float2 uv : TEXCOORD0;

};

struct v2f
{

float2 uv : TEXCOORD0;
float4 vertex : SV_POSITION;

};

sampler2D _MainTex; Properties
{

_MainTex ("Texture", 2D) = "white" {}
}

Shader – jednostavan program

v2f vert (appdata v)
{

v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = v.uv;
return o;

}

fixed4 frag (v2f i) : SV_Target
{

// sample the texture
fixed4 col = tex2D(_MainTex, i.uv);
return col;

}
ENDCG

}
}

}

Semantika ulazno/izlaznih podataka
Atributi temena
• POSITION : pozicija (najčešće float3 ili float4).
• NORMAL: normala (najčešće float3).
• TEXCOORD0..3: UV koordinate (najčešće float2, float3 ili float4).
• TANGENT: tangenta (najčešće float4).
• COLOR: boja (najčešće float4).

struct appdata
{

float4 vertex : POSITION;
float2 uv : TEXCOORD0;

};

float4 uv : TEXCOORD0; → (uv.xy, 0, 1)

Primer UV mape

UnityCG.cginc

• Biblioteka raznih uslužnih funkcija
• Transformacije geometrije ili u prostoru tekstura
• Projekcije, osvetljenje
• Sakriva uniformne podatke koje Unity prosleđuje do shader-a

struct appdata_base {
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 texcoord : TEXCOORD0;
UNITY_INSTANCE_ID

};

struct appdata_tan {
float4 vertex : POSITION;
float4 tangent : TANGENT;
float3 normal : NORMAL;
float4 texcoord : TEXCOORD0;
UNITY_INSTANCE_ID

};

struct appdata_full {
...
};

UnityCG.cginc
inline float4 UnityObjectToClipPos(in float3 pos) {
#ifdef UNITY_USE_PREMULTIPLIED_MATRICES

return mul(UNITY_MATRIX_MVP, float4(pos, 1.0));
#else

// More efficient than computing M*VP matrix product
return mul(UNITY_MATRIX_VP, mul(unity_ObjectToWorld, float4(pos, 1.0)));

#endif
}

inline float4 UnityWorldToClipPos(in float3 pos)
{ return mul(UNITY_MATRIX_VP, float4(pos, 1.0)); }

inline float4 UnityViewToClipPos(in float3 pos)
{ return mul(UNITY_MATRIX_P, float4(pos, 1.0)); }

inline float3 UnityObjectToWorldDir(in float3 dir)
{ return normalize(mul((float3x3)unity_ObjectToWorld, dir)); }

inline float3 UnityWorldToObjectDir(in float3 dir)
{ return normalize(mul((float3x3)unity_WorldToObject, dir)); }

inline float3 UnityObjectToViewPos(in float3 pos) ...
inline float3 UnityWorldToViewPos(in float3 pos) ...
inline float3 UnityObjectToWorldNormal(in float3 norm) ...

Još neki pomoćni mehanizmi

CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// make fog work
#pragma multi_compile_fog

#include "UnityCG.cginc"

struct v2f
{
float2 uv : TEXCOORD0;
UNITY_FOG_COORDS(1)
float4 vertex : SV_POSITION;

};

Još neki pomoćni mehanizmi
sampler2D _MainTex;
float4 _MainTex_ST;

v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = TRANSFORM_TEX(v.uv, _MainTex);
UNITY_TRANSFER_FOG(o,o.vertex);
return o;

}

fixed4 frag (v2f i) : SV_Target
{
fixed4 col = tex2D(_MainTex, i.uv);
// apply fog
UNITY_APPLY_FOG(i.fogCoord, col);
return col;

}
ENDCG

#define TRANSFORM_TEX(tex,name) (tex.xy * name##_ST.xy + name##_ST.zw)

Primer jednostavnog
Phong-ovog shader-a

Shader "RG2/02_SpecularShader"
{

Properties
{

_MainTex ("Texture", 2D) = "white" {}
}
SubShader
{

Tags { "RenderType"="Opaque" "LightMode" = "ForwardBase" }
LOD 100
Pass
{

CGPROGRAM
#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
#include "Lighting.cginc"

Primer jednostavnog
Phong-ovog shader-a

struct appdata
{

float4 vertex : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORD0;

};
struct v2f
{

float2 uv : TEXCOORD0;
float3 normal : NORMAL;
float4 vertex : SV_POSITION;
float3 lightDir : TEXCOORD1;
float3 viewDir : TEXCOORD2;

};

sampler2D _MainTex;

Primer jednostavnog
Phong-ovog shader-a

v2f vert (appdata v) {
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.normal = UnityObjectToWorldNormal(v.normal);
float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
o.lightDir = normalize(UnityWorldSpaceLightDir(worldPos));
o.viewDir = normalize(_WorldSpaceCameraPos.xyz - worldPos.xyz);
o.uv = v.uv;
return o;

}

fixed4 frag (v2f i) : SV_Target {
fixed4 col = tex2D(_MainTex, i.uv);
float3 normal = normalize(i.normal);
float3 lightDir = normalize(i.lightDir);
float lambert = max(0,dot(normal, lightDir));
float3 reflection = reflect(-lightDir, normal);
float specular = pow(max(0,dot(normalize(i.viewDir), reflection)), 25);
return fixed4(col.rgb*lambert + fixed3(specular, specular, specular), 1.0);

}
ENDCG

}

Upotreba više tekstura istovremeno
(scena 03_MultiTexture)

Properties
{

_DayTex ("Day", 2D) = "white" {}
_NightTex ("Night", 2D) = "white" {}
_GlossTex ("Gloss", 2D) = "white" {}

}

Upotreba više tekstura istovremeno

fixed4 frag (v2f i) : SV_Target
{

fixed4 day = tex2D(_DayTex, i.uv);
fixed4 night = tex2D(_NightTex, i.uv);
fixed4 gloss = tex2D(_GlossTex, i.uv);

float3 normal = normalize(i.normal);
float3 lightDir = normalize(i.lightDir);

float lambert = max(0, dot(normal, lightDir));
float3 reflection = reflect(-lightDir, normal);
float specular = pow(max(0,dot(normalize(i.viewDir), reflection)), 25) * gloss.r;
return fixed4(

lerp(night.rgb, day.rgb, lambert)
+
fixed3(specular, specular, specular),
1.0

);
}

Alpha blending
Properties
{

DayColor ("Day", Color) = (0,0.7,1)
SunsetColor ("Sunset", Color) = (1, 0.5, 0)

}
SubShader
{

Tags { "RenderType"="Opaque" "LightMode"="ForwardBase" }

Blend SrcAlpha OneMinusSrcAlpha

fixed4 frag (v2f i) : SV_Target
{

float3 normal = normalize(i.normal);
float3 lightDir = normalize(i.lightDir);

float lambert = max(0, dot(normal, lightDir));
float alpha = (1 - dot(i.viewDir, normal)) * lambert;
return fixed4(lerp(SunsetColor.rgb, DayColor.rgb, lambert), alpha);

}

Normal mapping (Bump mapping)
(scena 04_NormalMap)

• Tehnika kojom se povećava vizuelni doživljaj detalja
na površi 3D modela

• U realnosti, retko koja površ je glatka
• Neravnine se vizuelno manifestuju lokalnim promenama

intenziteta reflektovanog svetla (ispupčenja i udubljenja)
• Modeliranje neravnina geometrijom (temenima)

bi bilo neefikasno
• Vizuelni doživljaj: suština je u promeni intenziteta svetla
• Nije neophodno teme, dovoljna je lokalna informacija o normali
• Ideja: sadržaj teksture → informacija o normalama

Normal - mapa

• RGB komponente svakog teksela preslikavaju se u XYZ komponente normale
• Opseg RGB komponenti je [0, 1]
• Opseg XYZ komponenti je [-1,1]
• Najčešće se primenjuje transformacija: (RGB-0.5)·2
• Posledica:

• "neutralna" normala je: (0,0,1).
• odgovarajuća RGB je: (0.5, 0.5, 1)

Tangentni prostor

• Problem:
– normale u normal mapi nisu zadate u k.s. objekta
– lokalne su za svaki poligon – tzv. tangentni prostor

• Kako definisati tangentni prostor? Potrebna 3 vektora:
• normala (atribut temena)
• tangenta (atribut temena)
• bi-tangenta (bi-normala) – vektorski proizvod normale i tangente

• U vertex shader-u se izračuna vektor ka svetlu u tangentnom
prostoru svakog verteksa i automatski se interpolira

Shader program
Shader "RG2/03_BumpShader" {

Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
_Bump ("Bump", 2D) = "bump" {}

}
SubShader {

Tags { "RenderType"="Opaque" "LightMode"="ForwardBase" }
LOD 200
Pass {

Cull Back

CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

sampler2D _MainTex;
sampler2D _Bump;
struct app2v {

float4 vertex : POSITION;
float3 normal : NORMAL;
float4 texcoord : TEXCOORD0;
float4 tangent : TANGENT;

};
struct v2f {

float4 pos : POSITION;
float2 uv : TEXCOORD0;
float3 lightDirection : TEXCOORD1;

};

Shader program
v2f vert (app2v v) {

v2f o;
TANGENT_SPACE_ROTATION;
o.lightDirection = mul(rotation, ObjSpaceLightDir(v.vertex));
o.pos = UnityObjectToClipPos(v.vertex);
o.uv = v.texcoord;
return o;

}

fixed4 frag(v2f i) : COLOR {
float4 c = tex2D (_MainTex, i.uv);
float3 n = UnpackNormal(tex2D (_Bump, i.uv));
float diff = saturate (dot (n, normalize(i.lightDirection)));
c.rgb = diff * c.rgb;
return c;

}
ENDCG

}
}

Shader program

#define TANGENT_SPACE_ROTATION \
float3 binormal = cross(normalize(v.normal), normalize(v.tangent.xyz)) * v.tangent.w; \
float3x3 rotation = float3x3(v.tangent.xyz, binormal, v.normal)

float3 ObjSpaceLightDir(in float4 v) {
float3 objSpaceLightPos = mul(unity_WorldToObject, _WorldSpaceLightPos0).xyz;
return objSpaceLightPos.xyz - v.xyz * _WorldSpaceLightPos0.w;

}

fixed3 UnpackNormal(fixed4 packednormal)
{

return packednormal.xyz * 2 - 1;
}

Iz UnityCG.cginc:

Interaktivno bojenje 3D modela
(scena 05_Paint)

• Raspored trouglova u prostoru teksture može biti
(i često jeste) nepravilan

• Bojenje modela složeno – zahteva crtanje po teksturi
u veoma nepravilnim oblastima

• Jednostavnije: "nanošenje boje" direktno na modelu
nalik na bojenje skulpture

Interaktivno bojenje 3D modela
• Algoritam u dva prolaza

1. Pravljenje obojene teksture
i. Za selektovanu tačku na ekranu odrediti da li pripada objektu
ii. Novu boju upisati u obojenu teksturu

2. Obojenu teksturu kombinovati sa originalnom teksturom

• Kako odrediti da li tačka na ekranu pripada objektu?
– Tačka sa ekrana i tačka objekta treba da budu u istom k.s., recimo NDC
– Transformacija za tačku sa ekrana: k.s. ekrana -> NDC
– Transformacija za tačku sa objekta: k.s. modela -> NDC

• Kako upisati boju u obojenu teksturu?
– Izlaz fragment funkcije će biti boja za upis
– Ta boja odgovara fragmentu koji bi se prikazao na ekranu
– Koord. fragmenta je u NDC
– Fragment međutim neće završiti na ekranu, već u obojenoj teksturi
– Prema tome, NDC koord. ne treba da dolazi od tačke sa objekta,

već od uv tačke teksture koja odgovara tački sa objekta
– Potrebno je da uv koord. prebacimo u NDC k.s.

Interaktivno bojenje 3D modela

Tekstura UV mapa

Interaktivno bojenje 3D modela

• Obratiti pažnju:
– UV koordinate po pravilu zadate su u opsegu [0, 1]
– Koordinate u NDC su u opsegu [-1, 1]
– Preslikavanje: NDC = (UV – 0.5) · 2

u

v

1

1

1

1

-1

(0,0)

(0,0)

Prostor teksture NDC

Interaktivno bojenje 3D modela
Shader "RG2/05_PaintShader" {

SubShader {
Tags { "RenderType"="Opaque" }
LOD 100
Blend SrcAlpha OneMinusSrcAlpha
BlendOp Add, Max
Cull Off
Pass {

CGPROGRAM
#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
struct appdata
{

float4 vertex : POSITION;
float2 uv : TEXCOORD0;

};
struct v2f
{

float4 vertex : SV_POSITION;
float2 screenCoord : TEXCOORD0;

};

Program za senčenje
koji crta po teksturi

Interaktivno bojenje 3D modela
float4 center;
float radius;

v2f vert (appdata v) {
v2f o;
float4 vertexInHCS = UnityObjectToClipPos(v.vertex);

o.vertex = float4((v.uv-0.5)*2, 0, 1);
o.screenCoord = vertexInHCS.xy / vertexInHCS.w;
return o;

}

fixed4 frag (v2f i) : SV_Target {
float2 dist = i.screenCoord - center.xy;
float dist2 = dot(dist, dist);
float alpha = 1 - dist2 / (radius*radius);
fixed4 col = fixed4(1, 1, 1, alpha);
return col;

}
ENDCG

}
}

}

Parametri četkice – vrh je kružnog oblika

Preslikavanje UV→NDC

Interpolacija pozicije

Udaljenost piksela
od centra četkice

Vrednosti boje automatski odsečene u opsegu [0,1]

Interaktivno bojenje 3D modela
Shader "RG2/05_ViewPaint" {

Properties {
_MainTex ("Main", 2D) = "white" {}
_PaintTex ("Paint", 2D) = "white" {}

}
SubShader {

Tags { "RenderType"="Opaque" "LightMode"="ForwardBase" }
LOD 100
Pass {

CGPROGRAM
#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
struct appdata
{

float4 vertex : POSITION;
float2 uv : TEXCOORD0;

};
struct v2f
{

float4 vertex : SV_POSITION;
float2 uv : TEXCOORD0;

};

Program za senčenje koji
kombinuje osnovnu teksturu
i teksturu po kojoj je korisnik crtao

Interaktivno bojenje 3D modela
sampler2D _MainTex;
sampler2D _PaintTex;

v2f vert (appdata v)
{

v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = v.uv;
return o;

}

fixed4 frag (v2f i) : SV_Target
{

fixed4 main = tex2D(_MainTex, i.uv);
fixed4 paint = tex2D(_PaintTex, i.uv);

return fixed4(lerp(main.rgb, paint.rgb, paint.a), 1.0);
}
ENDCG

}
}

}
Koristi se prozirnost teksture sa crtežom
da bi se kontrolisala modulacija osnovne
teksture i teksture sa crtežom

Interaktivno bojenje 3D modela

Posebna kamera koja će služiti
za bojenje. NEAKTIVNA!
Ima istu poziciju i orijentaciju
kao glavna kamera.
Ne treba da briše sliku
po kojoj crta (Don't clear).
Crta po posebnoj "Render" teksturi.

Interaktivno bojenje 3D modela

Poseban objekat sa skriptom
kojom korisnik kontroliše rad.
Eksplicitno se zadaje kamera
koja "crta" po teksturi
Eksplicitno se zadaje
shader koji će kamera koristiti

Debljina četkice

Interaktivno bojenje 3D modela
using UnityEngine;
using System.Collections;

public class L05_User : MonoBehaviour {

[SerializeField]
private Camera renderCamera;

[SerializeField]
private Shader paintShader;

[SerializeField]
private float Radius = 0.1f;

private Vector4 center = new Vector4();

Kamera bi mogla da se dohvati programskim
putem, ali je ovako jednostavnije.

Slično važi i za program za senčenje.

Interaktivno bojenje 3D modela

void Start () {
if (renderCamera == null || paintShader == null)

return;

Graphics.SetRenderTarget(renderCamera.targetTexture);
GL.Clear(false, true, Color.clear);

renderCamera.aspect = 1;
Camera.main.aspect = 1;

renderCamera.SetReplacementShader(paintShader, null);
}

Brisanje sadržaja teksture,
samo jednom, na početku rada.

Neophodno poštovati odnos širine i visine
teksture.

Kamera će pri crtanju koristiti samo ovaj
program za senčenje.

Interaktivno bojenje 3D modela

void Update () {
if (renderCamera == null || paintShader == null)

return;

if(Input.GetMouseButton(0)) {
Vector3 screenMousePos = Input.mousePosition;
center.x = (screenMousePos.x / Screen.width - 0.5f) * 2;
center.y = (screenMousePos.y / Screen.height - 0.5f) * 2;

Shader.SetGlobalFloat("radius", Radius);
Shader.SetGlobalVector("center", center);

renderCamera.Render();
}

}
}

Postavljanje vrednosti uniformnih promenljivih

Eksplicitno pozivanje crtanja

Interaktivno bojenje 3D modela

• Oprez!
• Ovo rešenje obuhvata sve trouglove čije XY koordinate u HPO
• To uključuje i trouglove koji su okrenuti

naličijem prema posmatraču
• Posledica: boje se i "prednja" i "zadnja" strana objekta.

?

Reflektujući i proziran materijal

• Prave refleksije (ogledanja) su veoma zahtevne
u tradicionalnom načinu sinteze slike (rasterizacija poligona)

• Generalni pristup senčenja ogledajućeg poligona:
– kameru postaviti tako da odgovara poziciji

i orijentaciji posmatrača u ogledalu
– formirati sliku (= slika koju bi posmatrač video u ogledalu)
– koristiti formiranu sliku kao teksturu za senčenje poligona

• Moralo bi da se primeni za svaku ogledajuću ravan
• Neefikasno

Posmatrač

Reflektujući
materijal

Reflektujući i proziran materijal

• Aproksimativno rešenje: Cube map
• Kocka koja "okružuje" posmatrani deo scene
• Presvučena slikama (6) koje "vidi" kamera u centru kocke
• Pretpostavka: kocka je veoma (beskonačno) velika

– dobar rezultat samo za velike scene gde se "ogleda nebo"

• Pozitivno: efikasno, hardverska podrška
• Negativno: za dinamične scene,

slike moraju da se generišu
pri svakoj promeni

• Kompromis: lokalizovane mape, za
različite delove scene

Reflektujući i proziran materijal

• Primer za cube map

Zadatak za vežbu: napraviti Unity program koji formira svih 6 slika
za cube map trenutne scene, snimi ih u .png i formira jednu cube map od toga.

Reflektujući i proziran materijal

• Pravljenje cube map-e u Unity
– 1 tekstura (Type: Advanced, Mapping: 6 Frames Layout)
– 6 tekstura koje se objedine u jedan objekat (Assets/Legacy/CubeMap)

• Postavljanje cube map-e u Unity:
– Globalno: Window/Lighting/Scene/Skybox
– Po kameri: Dodati komponentu SkyBox

• Podrazumeva se:
– strane kocke su paralelne osama k.s.s.
– kocka je centrirana u (0, 0) k.s.s.

Reflektujući i proziran materijal

• Kako izabrati koja od 6 tekstura se koristi?
– potrebna trodimenziona koordinata (dvodimenziona UV nije dovoljna)
– strana kocke se bira na osnovu komponente najvecećg intenziteta
– +X ili –X se bira ako je X komponenta dominantna
– ostale 2 se koriste kao "UV"

Reflektujući i proziran materijal

• Bitno svojstvo materijala:
intenzitet refleksije zavisi od
ugla posmatranja

• Frenelova (Fresnel) reflektansa
– realna formula
– Šlikova aproksimacija
– Tabelirana funkcija (tekstura)

Reflektujući i proziran materijal
Shader "RG2/06_GlassShader"
{

Properties
{

_CubeMap ("Cube map", CUBE) = "white" {}
_Transparency("Transparency", Range(0, 1)) = 1.0

}
SubShader
{

Tags { "Queue" = "Transparent" "LightMode"="ForwardBase" }

Blend SrcAlpha OneMinusSrcAlpha

ZWrite off

Pass
{

CGPROGRAM
#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"

Reflektujući i proziran materijal

struct appdata {
float4 vertex : POSITION;
float3 normal : NORMAL;

};

struct v2f {
float3 normal : NORMAL;
float3 vertexPosInObjSpace : TEXCOORD0;
float4 vertex : SV_POSITION;

};

samplerCUBE _CubeMap;
float _Transparency;

v2f vert (appdata v) {
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.normal = v.normal;
o.vertexPosInObjSpace = v.vertex;
return o;

}

Reflektujući i proziran materijal

fixed4 frag (v2f i) : SV_Target
{

float3 viewDir =
normalize(ObjSpaceViewDir(float4(i.vertexPosInObjSpace, 1))).xyz;

float3 uv = reflect(-viewDir, normalize(i.normal));

uv = mul(UNITY_MATRIX_M, float4(uv, 0));

fixed4 col = texCUBE(_CubeMap, uv);
col.a = (1-dot(viewDir, i.normal))*(1-_Transparency);
return col;

}
ENDCG

}
}

}

Ovaj program za senčenje ne razmatra Frenelovu reflektansu.
Vežba: dodati Frenelovu reflektansu!

Ako se viewDir računa u Vertex shader-u,
uočljive vizuelne deformacije

Naknadna obrada slike

• Eng.: postprocessing
• Obrada se vrši nad prethodno sintetizovanom slikom
• Obično se vrši nad celom slikom, ali nije neophodno
• Postizanje efekata:

– promena nijanse boja (desaturacija, hue shifting, ...)
– promena rezolucije
– zamućenje (blur)
– lens flare
– ...

Samostalna vežba: promena
H komponente u HSV sistemu

Naknadna obrada slike

• Kameri se doda MonoBehaviour komponenta
– proizvoljan broj
– primenjuju se u redosledu dodavanja

• void OnRenderImage(RenderTexture src, RenderTexture dst)

• Poziva se nakon što kamera formira sliku

Camera

Script 1

src
↓
dst

Script 2

src
↓
dst

...

Script n

src
↓

dst (null)

frame
buffer

Naknadna obrada slike

• Graphics.Blit
– public static void Blit(Texture source, RenderTexture dest);

– public static void Blit(Texture source, RenderTexture dest,
Material mat, int pass = -1);

– public static void Blit(Texture source, Material mat,
int pass = -1);

• Primenjuje zadati materijal (program za senčenje) i prolaz
• Vrši kopiranje izvorišne slike u odredišnu (bit block transfer),

odnosno crta pravougaonik preko odredišne slike

• Postavlja dest kao render target
• Postavlja source kao _MainTex materijala

https://docs.unity3d.com/ScriptReference/Texture.html
https://docs.unity3d.com/ScriptReference/RenderTexture.html
https://docs.unity3d.com/ScriptReference/Texture.html
https://docs.unity3d.com/ScriptReference/RenderTexture.html
https://docs.unity3d.com/ScriptReference/Material.html
https://docs.unity3d.com/ScriptReference/Texture.html
https://docs.unity3d.com/ScriptReference/Material.html

Bloom efekat

• "Isijavanje" (bukvalno: cvetanje)
• Svetli delovi formirane slike se delimično prelivaju

preko susednih tamnih delova
• Problem: prelivanje nije u skladu sa rasterizacijom poligona

Bloom efekat

• Ideja: formirati filtriranu sliku originala
– niskopropusni filtar (zamućenje, prelivanje, nema oštrih ivica)
– optimizacija: smanjiti veličinu filtrirane slike

• Konačnu sliku formirati kombinovanjem

Bloom efekat
• U ovom rešenju (nije optimizovano)

– Posebna kamera formira sliku niže rezolucije (BloomRenderTexture)
– Skripta vrši filtriranje (L07_Blur.cs)

• Glavna kamera
– Formira sliku
– Kombinuje filtriranu i formiranu (L07_Bloom.cs)

• Nisu neophodne 2 kamere
– Može da se izvede pomoću jedne kamere
– Videti Unity Bloom efekat i prateće klase/programe za senčenje

å9
1

Bloom efekat
using UnityEngine;
using System.Collections;

public class L07_Blur : MonoBehaviour {

[SerializeField]
private Shader BlurShader;

Material m_Material = null;
protected Material material {

get {
if (m_Material == null) {

m_Material = new Material(BlurShader);
m_Material.hideFlags = HideFlags.DontSave;

}
return m_Material;

}
}

L07_Blur.cs

Bloom efekat

protected void OnDisable() {
if (m_Material) {

DestroyImmediate(m_Material);
}

}

void OnRenderImage(RenderTexture src, RenderTexture dst){
int rtW = src.width / 4;
int rtH = src.height / 4;
RenderTexture buffer = RenderTexture.GetTemporary(rtW, rtH, 0);

material.SetTexture("_MainTexture", src);
Graphics.Blit(src, buffer, material);

material.SetTexture("_MainTexture", buffer);
Graphics.Blit(buffer, dst, material);

RenderTexture.ReleaseTemporary(buffer);
}

}

L07_Blur.cs

Bloom efekat
L07_Bloom

.cs

using UnityEngine;
using System.Collections;

public class L07_Bloom : MonoBehaviour {

[SerializeField]
private RenderTexture BlurTexture;

[SerializeField]
private Shader BloomShader;

static Material m_Material = null;
protected Material material {

get {
if (m_Material == null) {

m_Material = new Material(BloomShader);
m_Material.hideFlags = HideFlags.DontSave;

}
return m_Material;

}
}

Bloom efekat
L07_Bloom

.cs

protected void OnDisable() {
if (m_Material) {

DestroyImmediate(m_Material);
}

}

void OnRenderImage(RenderTexture src, RenderTexture dst) {
material.SetTexture("_MainTexture", src);
material.SetTexture("_BlurTexture", BlurTexture);
Graphics.Blit(src, dst, material);

}
}

Bloom efekat
07_BlurShader

Shader "RG2/07_BlurShader" {
SubShader {

Tags { "RenderType"="Opaque" }

Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
struct appdata
{

float4 vertex : POSITION;
};
struct v2f
{

float4 vertex : SV_POSITION;
float2 screenPos : TEXCOORD0;

};
sampler2D _MainTexture;
// Unity popunjava: x=1/width, y=1/height, z=width, w=height
float4 _MainTexture_TexelSize;

https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html

Bloom efekat
07_BlurShader

v2f vert (appdata v) {
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

}

fixed4 frag (v2f i) : SV_Target {
int filterSize = 5; int maxSteps = 11; float divisor = 121;
float2 uv = i.screenPos - filterSize*_MainTexture_TexelSize.xy;
float4 color = float4(0,0,0,0);
for(int i = 0; i < maxSteps; i++) {

for(int j = 0; j < maxSteps; j++) {
float4 tmp = tex2D(_MainTexture, uv +

float2(_MainTexture_TexelSize.x*j,
_MainTexture_TexelSize.y*i)) + 0.35;

color += tmp*tmp*tmp;
}

}
return fixed4(color.rgb/divisor, 1);

}
ENDCG

}
}

}

Eksperimentalno utvrđeno

Bloom efekat
07_Bloom

Shader

...
sampler2D _MainTexture;
sampler2D _BlurTexture;

v2f vert (appdata v) {
v2f o;

o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

}

fixed4 frag (v2f i) : SV_Target {
float2 uvMain = float2(i.screenPos.x, 1-i.screenPos.y);
float2 uvBlur = i.screenPos;
fixed4 mainColor = tex2D(_MainTexture, uvMain);
fixed4 bloomColor = tex2D(_BlurTexture, uvBlur);

float factor = dot(fixed3(0.2126, 0.7152, 0.0722), bloomColor.rgb);
return lerp(mainColor, bloomColor, factor);

}

#if UNITY_UV_STARTS_AT_TOP

Bloom efekat

• Samostalan rad
– proučiti kako je implementiran Bloom efekat

u paketu koji se distribuira uz Unity
– implementirati efikasnije filtriranje teksture
– pronaći bolji način da se istaknu svetli delovi spram ostatka

(umesto dodavanja neke konstante i računanja trećeg stepena)

Depth of Field (DoF) efekat

• Simulacija posmatranja scene kamerom
koja fokusira objekte na određenoj razdaljini

• Ideja zasnovana na zakonima optike,
ali često realizovana trikovima

• Često dovoljno dobro da se vizuelno dočara efekat
u dinamičnim scenama

DoF efekat

• Moguća realizacija:
– Kamera "posmatra" istu tačku dok trpi relativno male pomeraje
– Dobijene slike se akumuliraju i odredi se prosek
– Fokusirani elementi su oštri, nefokusirani mutni
– Loša osobina: zahteva veći broj crtanja cele scene

• Realizacija obradom slike:
– Potrebna je "zamućena" slika (optimizacija kao kod Bloom efekta)
– Potrebno poznavati razdaljinu svakog piksela od kamere (Z-buffer)
– Kombinovati polaznu i "zamućenu" sliku

prema razdaljini od fokusirane razdaljine

DoF efekat

DoF efekat

DoF efekat

Bafer dubine Zona fokusa (crno)

DoF efekat

void OnRenderImage(RenderTexture src, RenderTexture dst)
{

int rtW = src.width / 4;
int rtH = src.height / 4;
RenderTexture buffer = RenderTexture.GetTemporary(rtW, rtH, 0);

DownsampleMaterial.SetTexture("_MainTex", src);
Graphics.Blit(src, buffer, DownsampleMaterial);

DoFMaterial.SetFloat("FocusRange", focusRange);
DoFMaterial.SetFloat("FocalDistance", focalDistance);
DoFMaterial.SetTexture("_DownsampledTex", buffer);
DoFMaterial.SetTexture("_MainTex", src);
Graphics.Blit(src, dst, DoFMaterial);

}

L09_DoF.cs

DoF efekat
sampler2D _MainTex;
// x=1/width, y=1/height, z=width, w=height
float4 _MainTex_TexelSize;

v2f vert (appdata v) {
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

}

fixed4 frag (v2f i) : SV_Target {
float2 delta = _MainTex_TexelSize.xy;
float2 uvMain = float2(i.screenPos.x, 1-i.screenPos.y);
half4 sample1 = tex2D(_MainTex, uvMain + delta*float2(0.5,0.5));
half4 sample2 = tex2D(_MainTex, uvMain + delta*float2(-0.5,0.5));
half4 sample3 = tex2D(_MainTex, uvMain + delta*float2(0.5,-0.5));
half4 sample4 = tex2D(_MainTex, uvMain + delta*float2(-0.5,-0.5));

return (sample1+sample2+sample3+sample4)*0.25;
}

09_Dow
nsam

pleShader

DoF efekat

sampler2D _MainTex;
sampler2D _DownsampledTex;
float4 _DownsampledTex_TexelSize;
sampler2D _CameraDepthTexture;
float FocalDistance;
float FocusRange;

v2f vert (appdata v) {
v2f o;

o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

}

09_DoFShader

DoF efekat
fixed4 frag (v2f i) : SV_Target {

float2 uv = i.screenPos.xy;
float2 uvInverted = float2(i.screenPos.x, 1-i.screenPos.y);
fixed4 depth = tex2D(_CameraDepthTexture, uv);
fixed4 mainColor = tex2D(_MainTex, uvInverted);
float4 blurColor = tex2D(_DownsampledTex, uv);

float zDist =
(FocalDistance-_ProjectionParams.y)/(_ProjectionParams.z-_ProjectionParams.y);

float offFocus = pow(abs(depth.r-zDist), FocusRange);

return lerp(mainColor, blurColor, offFocus);
}

https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html
_ProjectionParams.y = near clipping plane
_ProjectionParams.z = far clipping plane

09_DoFShader

