Racunarska grafika 2

13M111RG2

5 Unity — programi za sencenje

Shader — struktura programa
(podsetnik)

Shader

Properties

SubShader
Pass

Pass

SubShader
Pass

Pass

Shader - sintaksa

Shader "name" {
[Properties] Subshaders [Fallback] [CustomEditor] }

e https://docs.unity3d.com/Manual/SL-Shader.html

* Properties - podaci (teksture, boja, ...) vidljivi u inspektoru mat.
— mogu podesSavati i fiks. delove rend. pipel. — na primer Blend
— vrednosti se Cuvaju (serijalizuju) od strane Unity Editora

e Subshaders + Fallback
— lista shader programa
— najmanje 1
— primenjuje se prvi koji moze da radi na datom hardveru

* CustomEditor
— naziv klase koju treba koristiti u Unity Editoru za prikazivanje ovog shader-a

https://docs.unity3d.com/Manual/SL-Shader.html

Properties { Property [Property ..

name
name
name

name
name

name
name
name

("display
("display
("display

("display
("display

("display
("display
("display

Shader — sintaksa

name",
name",
name",

name",
name",

name",
name",
name",

Properties

-1}
Range (min, max)) = number
Float) = number
Int) = number

Color) = (number,number,number,number)

Vector) = (number,number,number,number)

2D) = "defaulttexture" {}
Cube) = "defaulttexture" {}
3D) = "defaulttexture" {}

min Ilwhitell llblackll
llgr\ayll llbumpll Ilr\edll

Shader — sintaksa
SubShader

Subshader { [Tags] [CommonState] Passdef [Passdef ...] }

e Definise:
— oznake (tags)
— zajednicko stanje za sve prolaze (sintaksa ista kao za pojedinacne prolaze)
— prolaze

Shader — sintaksa
Pass

Pass { [Name and Tags] [State] }
e Stanja:

Cull (Back | Front | Off)

ZTest (Less | Greater | LEqual | GEqual | Equal | NotEqual | Always)
ZWrite (On | Off)

Offset OffsetFactor, OffsetUnits

Blend srcBlendMode dstBlendMode, aSrcBlendMode aDstBlendMode
ColorMask (RGB | A | 0 | any combination of R, G, B, A)

e Vrste prolaza

"regularni”
UsePass — koristi postojeci prolaz nekog drugog prog. za sencenje

GrabPass — tekuci sadrzaj bafera slike Cuva u teksturu dostupnu
narednim prolazima

Shader — primer sintakse
(podsetnik)

Shader "RG2/SimpleShader™

{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
CGPROGRAM
#pragma ...
#include ...
}
ENDCG
}
}

Shader — jednostavan program

Shader "RG2/SimpleShader™
{

Properties

{
}

SubShader
{

_MainTex ("Texture", 2D) = "white" {}

Tags { "RenderType"="Opaque" }
LOD 100

Pass

{
CGPROGRAM

#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

Shader — jednostavan program

struct appdata

{
float4 vertex : POSITION;

float2 uv : TEXCOORD®;
}s

struct v2f

{
float2 uv : TEXCOORD®;
floatd4 vertex : SV_POSITION;

}s

iProperties

-

sampler2D MainTex;

_MainTex ("Texture", 2D) = "white" {}

Shader — jednostavan program

v2f vert (appdata v)

{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
O.UvV = V.uv;
return o;
}
fixed4 frag (v2f i) : SV_Target
{
// sample the texture
fixed4 col = tex2D(_MainTex, i.uv);
return col;
}

ENDCG

Semantika ulazno/izlaznih podataka

Atributi temena

e POSITION : pozicija (najéesée float3 ili float4).

e NORMAL: normala (najéesée float3).

e TEXCOORD®..3: UV koordinate (najéesée float2, float3 ili float4).
e TANGENT: tangenta (najc¢esée float4).

e COLOR: boja(najéesée float4).

struct appdata Primer UV mape

{
float4 vertex : POSITION;

float2 uv : TEXCOORDO;

S

float4 uv : TEXCOORDO; -» (uv.xy, 0, 1)

UnityCG.cginc

e Biblioteka raznih usluznih funkcija

* Transformacije geometrije ili u prostoru tekstura

* Projekcije, osvetljenje

e Sakriva uniformne podatke koje Unity prosleduje do shader-a

struct appdata_base { struct appdata_tan {
float4 vertex : POSITION; float4 vertex : POSITION;
float3 normal : NORMAL; float4 tangent : TANGENT;
float4 texcoord : TEXCOORD®O; float3 normal : NORMAL;
UNITY_INSTANCE_ID float4 texcoord : TEXCOORDO;
}; UNITY_INSTANCE_ID
}s

struct appdata_full {

}s

UnityCG.cginc

inline float4 UnityObjectToClipPos(in float3 pos) {
#ifdef UNITY_USE PREMULTIPLIED MATRICES
return mul(UNITY_MATRIX_MVP, float4(pos, 1.0));
#telse
// More efficient than computing M*VP matrix product
return mul(UNITY_MATRIX_ VP, mul(unity_ObjectToWorld, float4(pos, 1.0)));
#endif

}

inline float4 UnityWorldToClipPos(in float3 pos)
{ return mul(UNITY_MATRIX VP, float4(pos, 1.0)); }

inline float4 UnityViewToClipPos(in float3 pos)
{ return mul(UNITY_MATRIX P, float4(pos, 1.0)); }

inline float3 UnityObjectToWorldDir(in float3 dir)
{ return normalize(mul((float3x3)unity_ObjectToWorld, dir)); }

inline float3 UnityWorldToObjectDir(in float3 dir)
{ return normalize(mul((float3x3)unity WorldToObject, dir)); }

inline float3 UnityObjectToViewPos(in float3 pos) ...
inline float3 UnityWorldToViewPos(in float3 pos) ...
inline float3 UnityObjectToWorldNormal(in float3 norm) ...

Jos neki pomoc¢ni mehanizmi

CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// make fog work

#fpragma multi compile fog

#include "UnityCG.cginc"

struct v2f

{

float2 uv : TEXCOORD®;
UNITY FOG COORDS(1)

floatd4 vertex : SV_POSITION;
}s

Jos neki pomoc¢ni mehanizmi

sampler2D _MainTex;
float4 MainTex ST;

v2f vert (appdata v)

{
v2f o;

o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = TRANSFORM TEX(v.uv, MainTex);

UNITY TRANSFER FOG(o,0.vertex);

return o;

}

fixed4 frag (v2f i) : SV_Target
{

fixed4 col = tex2D(_MainTex, i.uv);
// apply fog
UNITY APPLY FOG(i.fogCoord, col);

return col;

}
ENDCG

__

Primer jednostavnog
Phong-ovog shader-a

Shader "RG2/02_SpecularShader™

{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
}
SubShader
{
Tags { "RenderType"="Opaque" "LightMode" = "ForwardBase" }
LOD 100
Pass
{
CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
#include "Lighting.cginc"

Primer jednostavnog
Phong-ovog shader-a

struct appdata

{
floatd4 vertex : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORD®;

}s

struct v2f

{
float2 uv : TEXCOORD®;

float3 normal : NORMAL;

float4 vertex : SV_POSITION;
float3 lightDir : TEXCOORD1;
float3 viewDir : TEXCOORD2;

}s

sampler2D _MainTex;

Primer jednostavnog
Phong-ovog shader-a

v2f vert (appdata v) {
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.normal = UnityObjectToWorldNormal(v.normal);
float3 worldPos = mul(unity ObjectToWorld, v.vertex).xyz;
0.1lightDir = normalize(UnityWorldSpacelLightDir(worldPos));
o.viewDir = normalize(_WorldSpaceCameraPos.xyz - worldPos.xyz);
O.UV = V.uv;
return o;

}

fixed4 frag (v2f i) : SV_Target {
fixed4 col = tex2D(_MainTex, i.uv);
float3 normal = normalize(i.normal);
float3 lightDir = normalize(i.lightDir);
float lambert = max(@,dot(normal, lightDir));
float3 reflection = reflect(-lightDir, normal);
float specular = pow(max(0@,dot(normalize(i.viewDir), reflection)), 25);
return fixed4(col.rgb*lambert + fixed3(specular, specular, specular), 1.0);

}
ENDCG

Upotreba vise tekstura istovremeno

(scena 03_MultiTexture)

Properties

{
_DayTex ("Day", 2D) = "white" {}
_NightTex ("Night", 2D) = "white" {}
_GlossTex ("Gloss", 2D) = "white" {}

Upotreba vise tekstura istovremeno

fixed4 frag (v2f i) : SV_Target

{
fixed4 day = tex2D(_DayTex, i.uv);
fixed4 night = tex2D(_NightTex, i.uv);
fixed4 gloss = tex2D(_GlossTex, i.uv);

float3 normal = normalize(i.normal);
float3 lightDir = normalize(i.lightDir);

float lambert = max(@, dot(normal, lightDir));
float3 reflection = reflect(-lightDir, normal);
float specular = pow(max(@,dot(normalize(i.viewDir), reflection)), 25) * gloss.r;
return fixed4(
lerp(night.rgb, day.rgb, lambert)
+
fixed3(specular, specular, specular),
1.0

)s

Alpha blending

Properties

{
DayColor ("Day", Color) = (0,0.7,1)
SunsetColor ("Sunset", Color) = (1, 0.5, 0)

}
SubShader

{
Tags { "RenderType"="Opaque" "LightMode"="ForwardBase" }

Blend SrcAlpha OneMinusSrcAlpha

fixed4 frag (v2f i) : SV_Target

{
float3 normal = normalize(i.normal);
float3 lightDir = normalize(i.lightDir);

float lambert = max(@, dot(normal, lightDir));
float alpha = (1 - dot(i.viewDir, normal)) * lambert;
return fixed4(lerp(SunsetColor.rgb, DayColor.rgb, lambert), alpha);

Normal mapping (Bump mapping)

(scena 04 _NormalMap)

Tehnika kojom se povecava vizuelni dozivljaj detalja
na povrsi 3D modela

U realnosti, retko koja povrs je glatka

Neravnine se vizuelno manifestuju lokalnim promenama
intenziteta reflektovanog svetla (ispupCenja i udubljenja)

Modeliranje neravnina geometrijom (temenima)
bi bilo neefikasno

Vizuelni dozivljaj: sustina je u promeni intenziteta svetla
Nije neophodno teme, dovoljna je lokalna informacija o normali
|deja: sadrzaj teksture - informacija o normalama

Normal - mapa

RGB komponente svakog teksela preslikavaju se u XYZ komponente normale
Opseg RGB komponenti je [0, 1]

Opseg XYZ komponenti je [-1,1]

Najcesce se primenjuje transformacija: (RGB-0.5)-2

Posledica:

* "neutralna" normala je: (0,0,1).
* odgovarajuéa RGB je: (0.5, 0.5, 1)

Tangentni prostor

* Problem:
— normale u normal mapi nisu zadate u k.s. objekta
— lokalne su za svaki poligon — tzv. tangentni prostor

* Kako definisati tangentni prostor? Potrebna 3 vektora:

* normala (atribut temena)
e tangenta (atribut temena)
* bi-tangenta (bi-normala) — vektorski proizvod normale i tangente

e U vertex shader-u se izraCuna vektor ka svetlu u tangentnom
prostoru svakog verteksa i automatski se interpolira

Shader "RG2/03 BumpShader" {
Properties {

Shader program

_MainTex ("Base (RGB)", 2D) = "white" {}
_Bump ("Bump", 2D) = "bump" {}

}

SubShader {

Tags { "RenderType"="Opaque" "LightMode"="ForwardBase" }

LOD 200
Pass {

CGPROGRAM
#pragma vertex vert

#pragma fragment frag
#include "UnityCG.cginc"

sampler2D _MainTex;
sampler2D _Bump;
struct app2v {

float4
float3
float4
float4

}s

struct v2f
float4
float2
float3

}s

vertex : POSITION;
normal : NORMAL;
texcoord : TEXCOORDO;
tangent : TANGENT;

{
pos : POSITION;

uv : TEXCOORD@;
lightDirection : TEXCOORD1;

Shader program

v2f vert (app2v v) {

}

v2f 0;

TANGENT_SPACE_ROTATION;

o.lightDirection = mul(rotation, ObjSpacelLightDir(v.vertex));
0.pos = UnityObjectToClipPos(v.vertex);

o.uv = v.texcoord;

return o;

fixed4 frag(v2f i) : COLOR {

}

float4 c = tex2D (_MainTex, i.uv);

float3 n = UnpackNormal(tex2D (_Bump, i.uv));

float diff = saturate (dot (n, normalize(i.lightDirection)));
c.rgb = diff * c.rgb;

return c;

ENDCG

Shader program

Iz UnityCG.cginc:

#define TANGENT_SPACE_ROTATION \

float3 binormal = cross(normalize(v.normal), normalize(v.tangent.xyz)) * v.tangent.w; \
float3x3 rotation = float3x3(v.tangent.xyz, binormal, v.normal)

float3 ObjSpaceLightDir(in floatd v) {

float3 objSpaceLightPos = mul(unity WorldToObject, _WorldSpacelLightPos®@).xyz;
return objSpacelLightPos.xyz - v.xyz * WorldSpacelLightPos@.w;

fixed3 UnpackNormal(fixed4 packednormal)
{

}

return packednormal.xyz * 2 - 1;

Interaktivno bojenje 3D modela

(scena 05_Paint)

e Raspored trouglova u prostoru teksture moze biti
(i Cesto jeste) nepravilan

* Bojenje modela slozeno — zahteva crtanje po teksturi
u veoma nepravilnim oblastima

e Jednostavnije: "nanosSenje boje" direktno na modelu
nalik na bojenje skulpture

Interaktivno bojenje 3D modela

e Algoritam u dva prolaza

1.

2.

Pravljenje obojene teksture

i. Za selektovanu tacku na ekranu odrediti da li pripada objektu
ii. Novu boju upisati u obojenu teksturu

Obojenu teksturu kombinovati sa originalnom teksturom

e Kako odrediti da li tacka na ekranu pripada objektu?

Tacka sa ekrana i tacka objekta treba da budu u istom k.s., recimo NDC
Transformacija za tacku sa ekrana: k.s. ekrana -> NDC
Transformacija za tacku sa objekta: k.s. modela -> NDC

e Kako upisati boju u obojenu teksturu?

Izlaz fragment funkcije e biti boja za upis

Ta boja odgovara fragmentu koji bi se prikazao na ekranu

Koord. fragmenta je u NDC

Fragment medutim nece zavrsiti na ekranu, ve¢ u obojenoj teksturi

Prema tome, NDC koord. ne treba da dolazi od tacke sa objekta,
vec od uv tacke teksture koja odgovara tacki sa objekta

Potrebno je da uv koord. prebacimo u NDC k.s.

Interaktivno bojenje 3D modela

UV mapa

Tekstura

Interaktivno bojenje 3D modela

* Obratiti paznju:
— UV koordinate po pravilu zadate su u opsegu [0, 1]
— Koordinate u NDC su u opsegu [-1, 1]
— Preslikavanje: NDC = (UV-0.5) - 2

(0,0)

(0,0) u

Prostor teksture NDC

Interaktivno bojenje 3D modela

Shader "RG2/05 PaintShader™ {

SubShader { —
Tags { "RenderType"="Opaque" } Program za sencenje
LOD 100 koji crta po teksturi

Blend SrcAlpha OneMinusSrcAlpha

BlendOp Add, Max

Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
struct appdata

{
floatd4 vertex : POSITION;
float2 uv : TEXCOORD®;

}s

struct v2f

{

floatd4 vertex : SV_POSITION;
float2 screenCoord : TEXCOORD®;

}s

Interaktivno bojenje 3D modela

float4 center; . } . .)
float radius; Parametri Cetkice — vrh je kruznog oblika

v2f vert (appdata v) {
v2f 0;
float4 vertexInHCS = UnityObjectToClipPos(v.vertex);

o.vertex = float4((v.uv-0.5)*2, 0, 1); Preslikavanje UV->NDC
o.screenCoord = vertexInHCS.xy / vertexInHCS.w; Interpolacija pozicije
return o;

}

fixed4 frag (v2f i) : SV_Target ({))
float2 dist i.screenCoord - center.xy; Udaljenost piksela
float dist2 = dot(dist, dist); od centra Cetkice
float alpha = 1 - dist2 / (radius*radius);
fixed4 col = fixed4(1l, 1, 1, alpha);

return col;
}
ENDCG

} Vrednosti boje automatski odsecene u opsegu [0,1]

Interaktivno bojenje 3D modela

Shader "RG2/05 ViewPaint" {

i Program za sencenje koji
Properties { g J J

_MainTex ("Main", 2D) = "white" {} kombinuje osnovnu teksturu

_PaintTex ("Paint", 2D) = "white" {} i teksturu po kojoj je korisnik crtao
}
SubShader {

Tags { "RenderType"="Opaque" "LightMode"="ForwardBase" }

LOD 100

Pass {

CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"
struct appdata

{
float4 vertex : POSITION;
float2 uv : TEXCOORD®;

}s

struct v2f

{

floatd4 vertex : SV_POSITION;
float2 uv : TEXCOORD®;

}s

Interaktivno bojenje 3D modela

sampler2D _MainTex;
sampler2D _PaintTex;

v2f vert (appdata v)

{
v2f o;

o.vertex = UnityObjectToClipPos(v.vertex);

O.Uv = V.uv;
return o;

}

fixed4 frag (v2f i)
{

: SV_Target

fixed4 main = tex2D(_MainTex, i.uv);
fixed4 paint = tex2D(_PaintTex, i.uv);

return fixed4(lerp(main.rgb, paint.rgb, paint.a), 1.0);

}
ENDCG

T

Koristi se prozirnost teksture sa crtezom
da bi se kontrolisala modulacija osnovne
teksture i teksture sa crtezom

Interaktivno bojenje 3D modela

Posebna kamera koja ¢e s)uziti
za bojenje. NEAKTIVNA!

Ima istu poziciju i orijentaciju
kao glavna kamera.

Ne treba da brise sliku
po kojoj crta (Don't clear).

Crta po posebnoj "Render" teksturi.

Interaktivno bojenje 3D modela

Poseban objekat sa skriptom
kojom korisnik kontrolise rad.

Eksplicitno se zadaje kamera
koja "crta" po teksturi

Eksplicitno se zadaje
shader koji ¢e kamera koristiti

Debljina Cetkice

Interaktivno bojenje 3D modela

using UnityEngine;
using System.Collections;

public class L85 User : MonoBehaviour {

[SerializeField]

private Camera renderCamera; Kamera bi mogla da se dohvati programskim

putem, ali je ovako jednostavnije.

[SerializeField]
private Shader paintShader; Sli¢no vazi i za program za sencenje.

[SerializeField]
private float Radius =0.1f;

private Vector4 center = newVector4();

Interaktivno bojenje 3D modela

void Start () {

if (renderCamera ==null || paintshader == null) Brisanje sadrzaja teksture

return;
/ samo jednom, na pocetku rada.

Graphics.SetRenderTarget(renderCamera.targetTexture);
GL.Clear(false, true, Color.clear);

Neophodno postovati odnos Sirine i visine

renderCamera.aspect =1; teksture

Camera.main.aspect =1;

renderCamera.SetReplacementShader(paintShader, null);

Kamera ¢e pri crtanju koristiti samo ovaj
program za sencenje.

Interaktivno bojenje 3D modela

void Update () {

if (renderCamera==null || paintShader == null)

return;

if(Input.GetMouseButton(@)) {

Vector3 screenMousePos = Input.mousePosition;
center.x = (screenMousePos.x / Screen.width - 0.5f) * 2;
center.y = (screenMousePos.y / Screen.height - 0.5f) * 2;

Postavljanje vrednosti uniformnih promenljivih

Shader.SetGlobalFloat("radius", Radius);
Shader.SetGlobalVector("center", center);

renderCamera.Render();

Eksplicitno pozivanje crtanja

Interaktivno bojenje 3D modela

 Oprez!
 Ovo resenje obuhvata sve trouglove Cije XY koordinate u HPO

* To ukljuCuje i trouglove koji su okrenuti
naliCijem prema posmatracu

* Posledica: boje se i "prednja" i "zadnja" strana objekta.

Cecame ——
Display 1 # | Free Aspect T Scale O 1x Maximize on Play | Mute aud

Reflektujuci i proziran materijal

Prave refleksije (ogledanja) su veoma zahtevne
u tradicionalnom nacinu sinteze slike (rasterizacija poligona)

Generalni pristup sencenja ogledajuéeg poligona:

— kameru postaviti tako da odgovara poziciji
i orijentaciji posmatraca u ogledalu

— formirati sliku (= slika koju bi posmatrac video u ogledalu)
— koristiti formiranu sliku kao teksturu za sencenje poligona

Moralo bi da se primeni za svaku ogledajucu ravan

Neefikasno Reflektujudi
\materijal

‘/T\\

Posmatrac

Reflektujuci i proziran materijal

Aproksimativno resenje: Cube map
Kocka koja "okruzuje" posmatrani deo scene
Presvucena slikama (6) koje "vidi" kamera u centru kocke

Pretpostavka: kocka je veoma (beskonacno) velika
— dobar rezultat samo za velike scene gde se "ogleda nebo"

Pozitivno: efikasno, hardverska podrska

Negativno: za dinamicne scene,
slike moraju da se generisu
pri svakoj promeni

Kompromis: lokalizovane mape, za
razliCite delove scene

Reflektujuci i proziran materijal

* Primer za cube map

Wil 1
- - 'vv‘ ,‘
PZ

_PX _PY | _NX _Y _NZz
(+X axis) (+Y axis) (+2Z axis) (-X axis) (-Y axis) (-Z axis)

Zadatak za vezbu: napraviti Unity program koji formira svih 6 slika
\ za cube map trenutne scene, snimi ih u .png i formira jednu cube map od toga.

Reflektujuci i proziran materijal

* Pravljenje cube map-e u Unity
— 1 tekstura (Type: Advanced, Mapping: 6 Frames Layout)
— 6 tekstura koje se objedine u jedan objekat (Assets/Legacy/CubeMap)

* Postavljanje cube map-e u Unity:
— Globalno: Window/Lighting/Scene/Skybox
— Po kameri: Dodati komponentu SkyBox

 Podrazumeva se:
— strane kocke su paralelne osama k.s.s.
— kocka je centrirana u (0, 0) k.s.s.

Reflektujuci i proziran materijal

* Kako izabrati koja od 6 tekstura se koristi?
— potrebna trodimenziona koordinata (dvodimenziona UV nije dovoljna)
— strana kocke se bira na osnovu komponente najvececg intenziteta
— +Xili =X se bira ako je X komponenta dominantna
— ostale 2 se koriste kao "UV"

Reflektujuci i proziran materijal

Sce

* Bitno svojstvo materijala:
intenzitet refleksije zavisi od
ugla posmatranja

* Frenelova (Fresnel) reflektansa
— realna formula
— Slikova aproksimacija
— Tabelirana funkcija (tekstura)
1

Fresnel .-
Reflectance ;!
0.7
== copper 06 -
== aluminum 05
- iron 04
~— diamond 03 -
— glass s
— water o
i 0 IIO 2I0 3I0 4I0 5I0 610 7‘0 8I0 90

mmmmmmmmm “Real-Time Rendering, 3 Edition”, A K Peters 2008 angle of incidence 6;

Reflektujudi

Shader "RG2/06_GlassShader"

proziran materijal

{ Properties
{ _CubeMap ("Cube map", CUBE) = "white" {}
_Transparency("Transparency"”, Range(0, 1)) = 1.0
gubShader
4 Tags { "Queue" = "Transparent" "LightMode"="ForwardBase" }

Blend SrcAlpha OneMinusSrcAlpha

Pass

off

CGPROGRAM

#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"

Reflektujuci i proziran materijal

struct appdata {
floatd4 vertex : POSITION;
float3 normal : NORMAL;

}s

struct va2f {
float3 normal : NORMAL;
float3 vertexPosInObjSpace : TEXCOORD®@;
floatd4 vertex : SV_POSITION;

}s

3 samplerCUBE _CubeMap;
float _Transparency;

v2f vert (appdata v) {
v2f 0;
o.vertex = UnityObjectToClipPos(v.vertex);
o.normal = v.normal;
o.vertexPosInObjSpace = v.vertex;
return o;

Reflektujuci i proziran materijal

Ako se viewDir raCuna u Vertex shader-u,
uocljive vizuelne deformacije

fixed4 frag (v2f i) : SV_Target

{

float3 viewDir =
normalize(ObjSpaceViewDir(float4(i.vertexPosInObjSpace, 1))).xyz;

float3 uv = reflect(-viewDir, normalize(i.normal));

uv = mul(UNITY_MATRIX_M, float4(uv, 0));

— fixed4 col

col.a = (1-
return col;
}
ENDCG

= texCUBE(_CubeMap, uv);
dot(viewDir, i.normal))*(1-_Transparency);

Naknadna obrada slike

Eng.: postprocessing
Obrada se vrsi nad prethodno sintetizovanom slikom
Obicno se vrsi nad celom slikom, ali nije neophodno

Postizanje efekata:
— promena nijanse boja (desaturacija, hue shifting, ...)

———

— promena rezolucije ' Samostalna vezba: promena :
— zamucenje (blur) . H komponente u HSV sistemu |

— lens flare

Naknadna obrada slike

 Kameri se doda MonoBehaviour komponenta
— proizvoljan broj
— primenjuju se u redosledu dodavanja

* void OnRenderImage(RenderTexture src, RenderTexture dst)

* Poziva se nakon sto kamera formira sliku

Script 1 Script 2 Script n
frame
Camera src src > sfrc buffer
d d - d

dst dst — dst (null)

Naknadna obrada slike

Graphics.Blit

— public static void Blit(Texture source, RenderTexture dest);

— public static void Blit(Texture source, RenderTexture dest,
Material mat, int pass = -1);

— public static void Blit(Texture source, Material mat,
int pass = -1);

Primenjuje zadati materijal (program za sencenje) i prolaz

Vrsi kopiranje izvorisne slike u odredisnu (bit block transfer),
odnosno crta pravougaonik preko odredisne slike

Postavlja dest kao render target

Postavlja source kao MainTex materijala

https://docs.unity3d.com/ScriptReference/Texture.html
https://docs.unity3d.com/ScriptReference/RenderTexture.html
https://docs.unity3d.com/ScriptReference/Texture.html
https://docs.unity3d.com/ScriptReference/RenderTexture.html
https://docs.unity3d.com/ScriptReference/Material.html
https://docs.unity3d.com/ScriptReference/Texture.html
https://docs.unity3d.com/ScriptReference/Material.html

Bloom efekat

* "Isijavanje" (bukvalno: cvetanje)

e Svetli delovi formirane slike se delimi¢no prelivaju
preko susednih tamnih delova

* Problem: prelivanje nije u skladu sa rasterizacijom poligona

without Bloom with Bloom

Bloom efekat

* Ideja: formirati filtriranu sliku originala
— niskopropusni filtar (zamudéenje, prelivanje, nema ostrih ivica)
— optimizacija: smanijiti veliCinu filtrirane slike

e Konacnu sliku formirati kombinovanjem

Bloom efekat

U ovom resenju (nije optimizovano)
— Posebna kamera formira sliku nize rezolucije (BloomRenderTexture)
— Skripta vrsi filtriranje (LO7_Blur.cs)

T 1
/52

\\\ //

e @Glavna kamera =

— Formira sliku
— Kombinuje filtriranu i formiranu (LO7_Bloom.cs)

* Nisu neophodne 2 kamere

— Moze da se izvede pomocu jedne kamere
— Videti Unity Bloom efekat i pratecée klase/programe za sencenje

Bloom efekat

using UnityEngine;
using System.Collections;

public class L8@7 Blur : MonoBehaviour {

[SerializeField]
private Shader BlurShader;

Material m_Material =null;
protected Material material {
get {
if (m_Material ==null) {
m_Material = newMaterial(BlurShader);
m_Material.hideFlags =HideFlags.DontSave;
}

return m_Material;

saun|g /01

Bloom efekat

protected void OnDisable() {
if (m_Material) {
DestroyImmediate(m_Material);
}
}

void OnRenderImage(RenderTexture src, RenderTexturedst)
int rtW=src.width / 4;
int rtH=src.height / 4;
RenderTexture buffer = RenderTexture.GetTemporary(rtW, rtH, 0);

material.SetTexture(" _MainTexture", src);
Graphics.Blit(src, buffer, material);

material.SetTexture(" MainTexture", buffer);
Graphics.Blit(buffer, dst, material);

RenderTexture.ReleaseTemporary(buffer);

saun|g /01

Bloom efekat

using UnityEngine;
using System.Collections;

public class L@7 Bloom : MonoBehaviour {

[SerializeField]
private RenderTexture BlurTexture;

[SerializeField]
private Shader BloomShader;

static Material m_Material = null;
protected Material material {
get {
if (m_Material == null) {
m_Material = new Material(BloomShader);
m_Material.hideFlags = HideFlags.DontSave;
}

return m_Material,;

so'woo|g /01

Bloom efekat

protected void OnDisable() {
if (m_Material) {
DestroyImmediate(m_Material);

}
}

void OnRenderImage(RenderTexture src, RenderTexture dst) {
material.SetTexture(" MainTexture", src);
material.SetTexture(" BlurTexture", BlurTexture);
Graphics.Blit(src, dst, material);

so'woo|g /01

Bloom efekat

Shader "RG2/07_ BlurShader" {
SubShader {
Tags { "RenderType"="Opaque" }

Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

Jopeysinig L0

#include "UnityCG.cginc"
struct appdata

{

}s
struct v2f

{

floatd4 vertex : POSITION;

floatd4 vertex : SV_POSITION;
float2 screenPos : TEXCOORDO;
}s
sampler2D _MainTexture;
// Unity popunjava: x=1/width, y=1/height, z=width, w=height
float4 MainTexture TexelSize; N

https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html

Bloom efekat

v2f vert (appdata v) {
v2f o0;
o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

}

fixed4 frag (v2f i) : SV_Target {
int filterSize = 5; int maxSteps = 11; float divisor = 121;
float2 uv = i.screenPos - filterSize* MainTexture TexelSize.xy;
float4 color = float4(0,0,0,0);
for(int 1 = @; i < maxSteps; i++) {
for(int j = @; j < maxSteps; j++) {
float4 tmp = tex2D(_MainTexture, uv +
float2(_MainTexture_TexelSize.x*j,
_MainTexture TexelSize.y*i)) + 0.35;

color += tmp*tmp*tmp; R\\

} e
} !

return fixed4(color.rgb/divisor, 1); e e o

Jopeysinig L0

}
ENDCG

Bloom efekat

sampler2D _MainTexture;
sampler2D _BlurTexture;

v2f vert (appdata v) {

v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

} #if UNITY_UV_STARTS_AT_TOP

fixed4 frag (v2f i) : SV_Target { k/////
float2 uvMain = float2(i.screenPos.x, 1l-i.screenPos.y);
float2 uvBlur = i.screenPos;
fixed4 mainColor = tex2D(_MainTexture, uvMain);
fixed4 bloomColor = tex2D(_BlurTexture, uvBlur);

float factor = dot(fixed3(@.2126, 0.7152, 0.0722), bloomColor.rgb);
return lerp(mainColor, bloomColor, factor);

JapEYSWO0|g L0

Bloom efekat

e Samostalan rad

— prouciti kako je implementiran Bloom efekat
u paketu koji se distribuira uz Unity

— implementirati efikasnije filtriranje teksture

— pronaci bolji nacin da se istaknu svetli delovi spram ostatka
(umesto dodavanja neke konstante i raCunanja treceg stepena)

Depth of Field (DoF) efekat

e Simulacija posmatranja scene kamerom
koja fokusira objekte na odredenoj razdaljini

* Ideja zasnovana na zakonima optike,
ali Cesto realizovana trikovima

 Cesto dovoljno dobro da se vizuelno docara efekat
u dinamicnim scenama

» 9
o L @

Effect of the aperture (f-stop) on depth of field. A wider aperture will cause
shorter depth of field, meaning more blur or soft focus in the frame.

DoF efekat

* Moguca realizacija:
— Kamera "posmatra" istu tacku dok trpi relativno male pomeraje
— Dobijene slike se akumuliraju i odredi se prosek
— Fokusirani elementi su ostri, nefokusirani mutni
— Losa osobina: zahteva vedi broj crtanja cele scene

* Realizacija obradom slike:
— Potrebna je "zamucena" slika (optimizacija kao kod Bloom efekta)
— Potrebno poznavati razdaljinu svakog piksela od kamere (Z-buffer)

— Kombinovati polaznu i "zamucenu" sliku
prema razdaljini od fokusirane razdaljine

DoF efekat

-
.
»
-
source: Chris Bray Photography:

i

090000000000000¢(

DoF efekat

DoF efekat

Bafer dubine Zona fokusa (crno)

DoF efekat

void OnRenderImage(RenderTexture src, RenderTexture dst)

{

int rtW
int rtH

src.width / 4;
src.height / 4;

RenderTexture buffer = RenderTexture.GetTemporary(rtW, rtH, 0);

DownsampleMaterial.SetTexture(" MainTex", src);
Graphics.Blit(src, buffer, DownsampleMaterial);

DoFMaterial.SetFloat("FocusRange", focusRange);
DoFMaterial.SetFloat("FocalDistance", focalDistance);
DoFMaterial.SetTexture(" DownsampledTex", buffer);
DoFMaterial.SetTexture(" _MainTex", src);
Graphics.Blit(src, dst, DoFMaterial);

$2'40Q 601

DoF efekat

sampler2D _MainTex;
// x=1/width, y=1/height, z=width, w=height
float4 _MainTex_TexelSize;

v2f vert (appdata v) {
v2f 0;
o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

}

fixed4 frag (v2f i) : SV_Target {
float2 delta = _MainTex_TexelSize.xy;
float2 uvMain = float2(i.screenPos.x, 1l-i.screenPos.y);
half4 samplel = tex2D(_MainTex, uvMain + delta*float2(©.5,0.5));
half4 sample2 = tex2D(_MainTex, uvMain + delta*float2(-0.5,0.5));
half4 sample3 = tex2D(_MainTex, uvMain + delta*float2(0.5,-0.5));
half4 sampled4 = tex2D(_MainTex, uvMain +

return (samplel+sample2+sample3+sample4d)*0.25;

delta*float2(-0.5,-0.5));

Japeysajdwesumoq” 60

DoF efekat

sampler2D _MainTex;

sampler2D _DownsampledTex;

float4 _DownsampledTex_TexelSize;
sampler2D _CameraDepthTexture;
float FocalDistance;

float FocusRange;

v2f vert (appdata v) {
v2f 0;

o.vertex = UnityObjectToClipPos(v.vertex);
o.screenPos = (o.vertex.xy/o.vertex.w)*0.5+0.5;
return o;

19peys4od 60

49peys4od 60

DoF efekat

fixed4 frag (v2f i) : SV_Target {
float2 uv = i.screenPos.xy;
float2 uvInverted = float2(i.screenPos.x, 1l-i.screenPos.y);
fixed4 depth = tex2D(_CameraDepthTexture, uv);
fixed4 mainColor = tex2D(_MainTex, uvInverted);
float4 blurColor = tex2D(_DownsampledTex, uv);

float zDist =
(FocalDistance-_ProjectionParams.y)/(_ProjectionParams.z-_ProjectionParams.y);

float offFocus = pow(abs(depth.r-zDist), FocusRange);

return lerp(mainColor, blurColor, offFocus);

https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html
_ProjectionParams.y = near clipping plane
_ProjectionParams.z = far clipping plane

