n A
o@d ¢

Programiranje internet aplikacija

Elektrotehnicki fakultet, Univerzitet u Beogradu

. 2025/2026

Uvod

Deo MEAN steka - open-source JavaScript softverski stek

« M-MongoDB

« E-Express

. A-Angular
« N -Nodejs

W =
a8 N
r .
r R
y N
5
i N
4 b
f N
{ y
|)
i J |
| /
L 4
L 1
i 4
X
b 4
b o
9 i
&
,/'// : N Y
y 5
f i]
| 2
L 1

MEAN stack

2

’ Parse Request 3

Make Request Get Database

—

Mongo

"" \',nﬂ " :f‘.| 'l‘\ 1 NOdeJS
- \ Server /
| 4
Display Response 5 Return Database

Return Request

Node.js

o JavaScriptili TypeScript izvorni kod

o TypeScriptizvorni kod se prevodi u JavaScript kod
o Asinhroni event-driven JavaScript enviroment za izvrsavanje na

serverskoj strani

o Jedan proces koji omogucava asinhrone neblokirajuce pozive ka

API-jima, cime se omogucava velika konkurentnost bez

eksplicitnog thread management-a

e Npm package installer

Express

e Backend framework za posredovanje izmedu Node,s i baze
podataka
e RESTAPI

o« (CRUD operacije (create, read, update, delete)

o Y o

Instalacija, kreiranje i pokretanje aplikacije
o Node,s (22.21.0)
o https://nodejs.org/dist/v22.21.0/

[o npm init J
= za entry point staviti dist/server.js
npm install typescript --save-dev \
npm install @types/node --save-dev
npm install express
npm install @types/express --save-dev
npm install cors
npm install @types/cors —-save-dev
npm install mongoose

npm install mongodb / N
" npx tsc —init -—outDir dist ‘ | } tsconfig.json

— package.json

\

https://nodejs.org/dist/v22.21.0/
https://nodejs.org/dist/v22.21.0/

U package.json izmeniti jos i:

"scripts”: {

"test”: "echo \"Error: no test specified\" && exit 1"

A

Sd.

rscripts": {
"start”: "npm run serve",
"serve”: "node dist/server.js",
"build": "tsc"

}s

Struktura projekta i pocetni kod

> node modules import express from 'express’

VvV Src

const app = express()

TS server.ts

{} package-lock.json

app.get('/', (req,res)=> {res.send("Hello world!")})

{} package;json app.listen(4000, ()=>console.log('Express running on port 4000'))

8 tsconfig.json

e app.get-get zahtev
e req-request,res-response
o app.listen - osluskivanje na portu

Pokretanje projekta

« Komanda tsc
o Kompajlira sve iz src
o dist folder

v dist

JS serverjs

> node_modules

V' sIC

TS server.ts

{} package-lock.json
{} package.json

B8 tsconfig.json

o Pokretanje-npm run serve

O >> npm run serve

> backend@l.0.0 serve
> node dist/server.js

Express server running on port 4000

& - C @ localhost:4000

Hello World!

Kontroleri

// controllers/user.controller.ts
import express from 'express’
// import modela itd

export class UserController {
login = (req: express.Request, res: express.Response) => {
// npr.
let username = req.body.username;
let password req.body.password;
let result = . . .;

!/ .

res.json(result);

}

register = (req: express.Request, res: express.Response) => {

}... ‘
1

Rutiranje

// routers/user.router.ts
import express from 'express'
import { UserController } from

../controllers/user.controller’;
const userRouter = express.Router();

userRouter.route('/login').post(
(req, res) => new UserController().login(req, res)

)

export default userRouter;

Rutiranje — koris¢enje u server.ts

const router = express.Router();
router.use('/users', userRouter)

// const app = express();
app.use('/', router);

CORS

// server.ts
import cors from 'cors' // za cross-origin

// const app = express();
app.use(cors())
app.use(express.json()) // oznacavamo da podatke Saljemo u JSON formatu

HVALA NA PAZNJI!

	Slide 1: Programiranje internet aplikacija Elektrotehnički fakultet, Univerzitet u Beogradu 2025/2026
	Slide 2: Uvod
	Slide 3: MEAN stack
	Slide 4: Node.js
	Slide 5: Express
	Slide 6: Instalacija, kreiranje i pokretanje aplikacije
	Slide 7: U package.json izmeniti još i:
	Slide 8: Struktura projekta i početni kod
	Slide 9: Pokretanje projekta
	Slide 10: Kontroleri
	Slide 11: Rutiranje
	Slide 12: Rutiranje – korišćenje u server.ts
	Slide 13: CORS
	Slide 14

