@ Univerzitet u Beogradu - Elektrotehnicki fakultet

Spring Boot

¥ : L Z , ;["/‘;t‘ = | 'lr'/” a
i =7 | T |
—= _ = d | il L
T : - = e '
= i ] e ${'_= E & I
N L & [ il

Predavac: Prof. dr Drazen Draskovic

Beograd, april 2024. godine



@ * Kako pojednostaviti razvoj Spring
Sadrzaj aplikacija?

* Osnovne karakteristike Spring Boot

* PodeSavanje radnog prostora

* Arhitektura slojeva u Spring Boot
aplikaciji

* Povezivanje Spring Boot sa bazama
podataka i koriScenje JPA

* Testiranje Spring Boot aplikacija

4/29/2024 EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Spring Framework arhitektura

* Aspektno-orijentisano programiranje * Kontekst aplikacije - modul koji pruza razliCite usluge
« MVC - HTTP/servlet-baziran radni okvir na nivou servisa, rasporedivanja, e-postu, itd.
° Upravljanje transakcijama ° Svaka EE aplikaCija komuniCira Sa bazom: Sprlng DAO

* Jezgro Kontejner - pruZa ubrizgavanje obezbeduje apstrakciju preko JDBC

zavisnosti (DI/IoC), sadrZi BeanFactory,... * Spring ORM - alati za objektno-relaciono mapiranje

c Sprlng Framework Architecture o Spring Framework Runtime

spring

EnekTpoTexHHU4KH ¢aKyaTeT y beorpaay



@ Modularnost Spring aplikacije
/ Application \ / Domain \ / Infrastructure\

Layer Layer Layer

Business

Web Browser Application MyBatis
Spring Data JPA

Spring Framework
\“j

Spring MVC

(Client)

Java EE Application Server

EnekTpoTexHU4KH ¢aKyaTeT y beorpaay 4



@ Arhitektura aplikacije Spring

Repozitorijum Servis Kontroler

Baza
podataka Entiteti

r

v

Serverski deo aplikacij(ﬂ
Klijentski deo aplikacije

Pogledi (ViEWS)J

EnekTpoTexHU4KH ¢aKyaTeT y beorpaay 5



@ MVC kontrola toka

ZAHTEV (request)

ODGOVOR (response):
HTML / JSON / XML

KorisniCka akcija

AZuriraj model Obavesti

Azuriraj
pogled

Pogled (view) J

EnekTpoTexHU4KH ¢aKyaTeT y beorpaay



@ Spring 1 Spring Boot

* Spring je pocCeo kao alternativa Java EE (Enterprise Edition / J2EE) - umesto Java
Beans, koristiti injektiranu zavisnost i aspektno-orijentisano programiranje

* Lak za pisanje komponenti, tezak za konfigurisanje

* Pocetak sa XML fajlovima, zatim anotacije (od Spring 2.5), pa Java bazirano
konfigurisanje (od Springa 3.0)

* Upravljanje transakcijama i Spring MVC zahtevalo eksplicitnu konfiguraciju

* Upravljanje zavisnostima nezahvalan zadatak - koje biblioteke i koje verzije?

* Spring Boot - nudi novu paradigmu za razvoj Spring aplikacija, sa minimalnim
naporom (minimalno konfigurisanje)

* Spring Boot nam donosi: konvenciju za konfigurisanje; standardizaciju za
mikroservise; integrisani server za razvoj; podrsku za Cloud; prilagodavanje i
podrska za 3rd party biblioteke.

EsekTpoTexHUYKH daKyaTeT y beorpaay 7



@ Zasto nam je neophodan Spring Boot?

* Glavna prednost Spring Boot:
konfigurise resurse na osnovu onoga Sto nade u Classpath.

* Npr. ukoliko vas Maven POM sadrzi JPA zavisnosti i MySQL drajver, tada Ce
Spring Boot podesiti aplikaciju za rad sa MySQL bazom. Ukoliko dodate i veb
zavisnosti, onda ¢e podrazumevano biti konfigurisana Spring MVC arhitektura.

» Ukoliko se nista ne definiSe u POM fajlu, Spring Boot Ce konfigurisati
podrazumevano Hibernate kao JPA provajder sa HyperSQL DataBase.
* Glavni ciljevi uvodenja Spring Boot:
— Da se obezbedi brzi razvoj Spring aplikacija
— Da se lako iskoriste podrazumevane konfiguracije parametara aplikacije

— Da obezbedi veci broj nefunkcionalnih zahteva koji su veoma uobicajeni za projekte velikih
razmera (npr. ugradeni serveri, bezbednost aplikacije, metrika, eksterna konfiguracija, itd.)

EsekTpoTexHUYKH daKyaTeT y beorpaay 8



@ Spring Boot pokretanje

L= Q
-2

* Realizuju se stand-alone aplikacije, zasnovane na Spring tehnologiji,
koje se lako pokrecu

* Pokretanje slicno kao kod Javinih aplikacija: java —jar ili preko tradicionalnog WAR
* Postoji i CLI preko koga mozemo pokretati , Spring skripte”

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay 9



@ Hello World

* Primer aplikacije za Groovy-baziran WRestController
kontroler/klasu class HelloController {
* Nema konfiguracije
 Nema web.xml
QRequestMapping ("/")
* Pokretanje iz Spring Boot CLI: def hello () {

S spring run HelloController.groovy
return "Hello World"

* Ovo je samo primer da moze i sa Groovy, }
ali mi cemo raditi sa programskim jezikom
Java.

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@ Osnovne komponente Spring Boot

AUTO
CONFIGURE
=

* Automatska konfiguracija - automatsko
obezbedivanje konfiguracije

* Jezgro / PoCetne zavisnosti - kazete koju
funkcionalnost Zelite i osigurano je da Ce se
biblioteke dodati pri izgradnji

* Interfejs komandne linije (CLI) - pisanje
kompletne aplikacije samo sa kodom aplikacije
(bez tradicionalne izgradnje projekta)

e Aktuatori, starteri, alati

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



@ Automatska konfiguracija

e Modul koji radi auto konfiguraciju Sirokog spektra Spring projekata.

* Detektuje postojanje odredenog radnog okvira (eng. framework), kao Sto su:
Spring Batch, Spring Data JPA, Hibernate, J]DBC.

» Kada detektuje, pokusace da autokonfigurise taj radni okvir sa nekim razumnim
podrazumevanim vrednostima, koje se mogu lako zameniti (override)
konfiguracijom u datoteci application.properties/yml.

* *YAML (Yet Another Markup Language) - [ p———
human-readable data serialization language hosts: all

tasks:
= User:
. . e . . . name: “{{ item.name }}”
Kao i JSON, ovo je noviji jezik, alternativa XML. state: present

groups: “{{ item.groups }}”

with_items:
- { name: ‘linda’, groups: ‘wheel’ }
- { name: ‘lisa’, groups: ‘root’ }

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Spring Boot Core i CLI

* Sprint Core - baza za druge module, ali pruza neke funkcionalnosti koje mogu da
se koriste samostalno, npr. koriste¢i argumente komandne linije i YAML fajlova,
kao svojstva Spring okruzenja i automatski vezujuci svojstva okruzenja za svojstva
Spring bean-ova (sa validacijom).

* Spring CLI - interfejs komandne linije za pokretanje ili zaustavljanje kreiranja
jedne Spring Boot aplikacije.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Aktuatori, starteri i alati

» Aktuatori - kada se projekat doda, omoguci ¢e odredene osobine okruzenja
(bezbednost, metrika, stranica sa podrazumevanim greSkama) u vasoj aplikaciji.

» Koristi se da otkrije odredene radne okvire/osobine u vasoj aplikaciji.
* Primer: Koris¢enjem aktuatora mozete pronaci sve REST servise koji su definisani
u veb aplikaciji.

 Starteri - razliCiti kratki startni projekti koji se mogu ukljuciti kao zavisnost u vas
Maven/Gradle build fajl.

* Alati za izgradnju Maven i Gradle, kao i prilagodeni Spring Boot Loader (koris¢en u
izvrSnom JAR/WAR) su ukljuceni u projekat.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Kako koristiti Spring Boot?

|
» KoriS¢enjem start.spring.io (Initializr) ili koriS¢enjem STS (Spring 1

Tool Suite) podr$ke dostupne u alatima Intelli] IDEA ili Eclipse ili (€2 ©
VS Code, i onda odabrati sve Spring Boot Startere. w w

* Odabere se da li se koristi Maven ili Gradle kod izgradnje.

* Ukoliko se koristi start.spring.io, tada se preuzme ZIP i
konfiguriSe radni prostor. Sa druge strane, korisCenjem alata
(IDE) Ce se automatski kreirati zahtevani fajl u radnom prostoru.

» Zakreiranje JAR fajla, moze se koristiti mvn clean package ili
korisiti Intelli] IDEA /Eclipse. JAR podrazumeva integrisanje sa
Tomcat serverom.

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



Initializr

Project Language
O Kotlin

QO Gradle - Kotlin O Groovy
O Maven
Spring Boot
O 3.20(SNAPSHOT) O 3.2.0 (RC2)
O 3.1.6 (SNAPSHOT) O 3.0.13 (SNAPSHOT)

0O 3012 QO 27.18(SNAPSHOT) Q 27.17

Project Metadata

Group com.example

Dependencies

No dependency selected

Artifact demo

Name demo

ADD DEPENDENCIES... CTRL+B

GENERATE

CTRL + &

EXPLORE CTRL + SPACE

SHARE...




@ Koraci manuelne inicijalizacije

» Posetiti: https://start.spring.io.
» Servis povlaci sve neophodne zavisnosti koje Zelite i postvlja inicijalni setap.
 Bira se jezik koji zelite (Java/Kotlin/Groovy) i
tip izgradnje aplikacije (Gradle ili Maven).
* U zavisnostima odabrati: Spring Web.
* Pritisnuti Generate
* Preuzeti rezultujuci ZIP fajl, koji je generisana veb aplikacija.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Sta mi Zelimo?

Arhitektura punog steka - Angular + Spring + MySQL

Angular Frontend App

Templates ‘Components‘ Services

‘ Axios HTTP Library |

J =

‘ Spring REST Controller |

" pao
(Reposuory)‘ ﬁ MysaL

Database

p L
‘ Model H Service ‘

Spring Boot Backend
App

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



@ Spring Rest kontroleri

* Prihvataju HTTP zahteve sa klijentske strane (frontend) i upucuju ih odgovarajuc¢im
servisima.

» UKkljucuje procesiranje zahteva za podacima, autentifikaciju i autorizaciju korisnika
i druge akcije.
* Anotacija: @RestController

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



Primer kontrolera

@RestController - za prihvatanje veb
zahteva koristice Spring MVC.

package com.example.springboot;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController; @GetMapplng mapira na index() metod_

Kada se pozove iz veb pregledaca metoda
vraca tekst.

@RestController

public class HelloController {
To je zato Sto @RestController kombinuje
@GetMapping("/") @Controller i @ResponseBody, dve
public String index() { anotacije koje kao rezultat vracaju
podatke, a ne prikaz.

return "Greetings from Spring Boot!";

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



src/main/java/com/example/springboot/Application.java

Application class

package com.example.springboot;

import java.util.Arrays;

import org.springframework.boot.CommandLineRunner; for (String beanName : beanNames) {

import org.springframework.boot.SpringApplication; System.out.println(beanName);
import org.springframework.boot.autoconfigure.SpringBootApplication; }
import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.Bean; }s

@SpringBootApplication
public class Application { }
public static void main(String[] args) {

SpringApplication.run(Application.class, args);

}

@Bean
public CommandLineRunner commandLineRunner(ApplicationContext ctx) {
return args -> {

System.out.println("Let's inspect the beans provided by Spring Boot:");
String[] beanNames = ctx.getBeanDefinitionNames();

Arrays.sort(beanNames);



@ Anotacija @SpringBootApplication

* Ona dodaje sledece:
* @Configuration: Oznacava klasu kao izvor definicija bean-a za kontekst aplikacije.

* @EnableAutoConfiguration: Govori Spring Boot-u da treba da doda bean-ove
zasnovane na podeSavanjima classpath-a, drugim bean-ovima ili razlicitim
podesSavanjima osobina. Na primer: ako je spring-webmvc na classpath-u, ova
anotacija oznacava da je aplikacija tipa veb aplikcije i aktivira kljucna ponasanja,
kao Sto je podeSavanje DispatcherServiet (frontend kontroler).

 @ComponentScan: Trazi Spring-u da pronade druge komponente, konfiguracije i
servise u paketu.

* Metoda main() koristi Spring Boot’s SpringApplication.run() metod da pokrene
aplikaciju.

* Postoji i metoda CommandLineRunner oznaCena kao @Bean, koja se takode startuje,
i preuzima sve bean-ove koje je kreirala aplikacija ili su deo Spring Boot.

EsekTpoTexHUYKH daKyaTeT y beorpaay 22




@ Anotacija @RequestMapping

* @RequestMapping - koristi se da mapira HTTP zahtev u metodu MVC/REST
kontrolera. Kod Spring MVC aplikacija, DispatcherServlet je odgovoran za rutiranje
dolazeCeg HTTP zahteva u metodu kontrolera.

* (Ova anotacija se moze primeniti na nivo klase ili nivo metode u kontroleru.

* Na nivou klase, ova anotacija mapira specificnu putanju zahteva ili obrazac
(pattern) na kontroler. Moguce je dodati anotacije na nivou metoda da bi mapiranje
oznacili specificnijim.

* Primer:

// Annotation Ova anotacija veliki broj opcionih
@RequestMapping("/hello") elemenata:

// Method consumes, header, method, name,
public String helloWorld() { params, path, produces, value.

return "Hello World!";

}

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Mapiranja

 @GetMapping: Mapira zahteve HTTP GET u specificnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tacku veb servisa koji sluzi za dohvatanje podataka, sa klijentske strane.
Koristi se umesto: @RequestMapping(method = RequestMethod.GET)

@PostMapping: Mapira zahteve HTTP POST u specificnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tacku veb servisa koji kreira.
Koristi se umesto: @RequestMapping(method = RequestMethod.POST)

@PutMapping: Mapira zahteve HTTP PUT u specificnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tacku veb servisa koji kreira ili aZzurira.
Koristi se umesto: @RequestMapping(method = RequestMethod.PUT)

 @DeleteMapping: Mapira zahteve HTTP DELETE u specificnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tacku veb servisa koji briSe resurse.
Koristi se umesto: @RequestMapping(method = RequestMethod.DELETE)

 @PatchMapping: Mapira zahteve HTTP PATCH u specificnu metodu za hvatanje zahteva.
Koristi se umesto: @RequestMapping(method = RequestMethod.PATCH)

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ @RequestBody i @ResponseBody

* Anotacija @RequestBody Kkoristi se za vezivane zahteva (HttpRequest) sa
objektom prenosa u parametru metode (ili domenskim objektom), omogucavajuci
automatsku deserijalizaciju dolaznog tela HttpRequest na Java objekat.

* Podrazumevano tip koji je oznaCen anotacijom @RequestBody mora da odgovara
JSON objektu, koji Salje nas kontroler na klijentskoj strani.

* Anotacija @ResponseBody govori kontroleru da je vraceni objekat automatski
serijalizovan u JSON ili XML format, i vraCen nazad u HttpResponse objekat.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ @PathVariable i @RequestParam

* Anotacija @PathVariable se koristi za preuzimanje podataka sa URL putanje.

* Definisanjem dzoker znakova (placeholder) u mapirajucoj URL adresi zahteva,
mogu se povezati ti znakovi sa parametrima metoda anotiranih u @PathVariable.

* (Ovo omogucava pristup dinamickim vrednostima u URL i njihovo koriScenje.

* Primer: /users/123, Cime prosledujemo jedinstveni broj indeksa metodi, koja ¢e
preuzeti nakon toga neke podatke o tom korisniku (studentu)

* Anotacija @RequestParam dozvoljava da izvuCemo podatke iz parametara upita u
URL zahtevu. Parametri upita su kljuc-vrednost parovi, koji se ugraduju u URL
putanju nakon oznake ?

* Ovo je korisno kada treba proslediti dodatne informacije ili filtere vasSim krajnjim
tackama API

* Primer: /users/search?name=Milovan

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Koriscenje @PathVariable

@RestController
@RequestMapping("”/users")
public class UserController {

@GetMapping(" /{userld}")
public ResponseEntity<User> getUserDetails(@PathVariable Long userld) {
// Implementation to fetch user details based on the provided userld

// ..

return ResponseEntity.ok(user);

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Koriscenje @RequestParam

@RestController
@RequestMapping("”/users")
public class UserController {

@GetMapping("/search")

public ResponseEntity<List<User>> searchUsers(@RequestParam("'name”
String name) {

// Implementation to search users based on the provided name

// ..

return ResponseEntity.ok(users);

EsekTpoTexHUYKH daKyaTeT y beorpaay



i

Vise parametara u @RequestParam

@RestController MoZemo imati podrazumevanu (default)
@RequestMapping("/users") vrednost, ukoliko Query parametar nije
definisan u URL putanji.

public class UserController {

@GetMapping("/search")
public ResponseEntity<List<User>> searchUsers(

@RequestParam(value = "name", required = false, defaultValue = "John") String name,
@RequestParam(value = "age", required = false, defaultValue = "18") int age) {

// Implementation to search users based on the provided name and age

// ..

return ResponseEntity.ok(users);

EsekTpoTexHUYKH daKyaTeT y beorpaay




@ Jos neka vazna pravila konverzije

* Konverzija tipa podatka: Spring Boot omogucava automatsku konverziju tipa
podatka za @PathVariable i @RequestParam parametre. Ulazni podaci zahteva
mogu da se konvertuju u potrebne tipove podataka (String, int, boolean,...).
Ukoliko konverzija ne uspe, bice uhvacen izuzetak, omogucavajuci nam da lako
rukujemo greskom.

« ViSe parametara: MoZete Koristiti viSe paramerata i kod @PathVariable i
@RequestParam u jednoj metodi koja treba da izdvoji viSe vrednosti iz URL putane
i parametara upita. Ovo omogucava da koristimo vise podataka iz jednog zahteva.

» Validacija podataka: MozZete koristiti validaciju nad ekstrahovanim podacima iz
zahteva koriS¢enjem anotacija za validaciju iz paketa javax.validation ili
koriS¢enjem prilagodene logike validacije. Ovo pomaze da podaci ispunjavaju
odredene kriterijume, pre nego sto budu dalje procesirani.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Jos neka vazna pravila konverzije (2)

* Obrasci (patterns) promenljivih putanja: Anotacija @PathVariable podrzava
promenljive obrasce unutar URL putanje. Ovo moZe biti korisnio za rukovanje
dinamickim i sloZzenim URL strukturama.

» Kolekcije parametara upita: Ako oCekujete viSe vrednosti iz upita, moZete Koristiti
tipove List ili Array za odgovarajuci parametar metode oznacCen sa @RequestParam.
Spring Boot Ce automatski uvezati sve vrednosti za parametar kolekcije.

* Opcione promenljive putanje: Promenljive putanje mozete uciniti opcionim, time
Sto Cete obezbediti podrazumevanu vrednost ili koristiti tip Optional<T> kao
parametar metode. Ovo omogucava da rukujete slucajevima u kojima odredene
promenljive putanje mogu ili ne moraju biti prisutne u zahtevu.

* Rukujte uvek potencijalnim izuzecima i scenarijima sa greSkama kada ekstrahujete
podatke iz zahteva. Spring Boot pruza nekoliko razlicitih mehanizama.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ @RequestHeader

» Koristi se da bi se dohvatili detalji iz zaglavlja HTTP zahteva.
* Ova anotacija se koristi kao parametar metode.
* Opcioni elementi ove anotacije su: name, required, value, defaultValue

» Za svaki detalj u zaglavlju, treba da se koristi odvojena anotacija (dozvoljeno je
koriS¢enje anotacije vise puta u metodi).

* Primer sa string tipom u zaglavlju i definisanim imenom:

@GetMapping("/greeting")
public ResponseEntity<String> greeting(@RequestHeader(HttpHeaders.ACCEPT_LANGUAGE)
String language) {

// code that uses the language variable

return new ResponseEntity<String>(greeting, HttpStatus.OK);

}

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ @RequestHeader

* Primer sa celim brojem:
@GetMapping("/double")
public ResponseEntity<String> doubleNumber(@RequestHeader("my-number") int myNumber) {
return new ResponseEntity<String>(String.format("%d * 2 = %d",
myNumber, (myNumber * 2)), HttpStatus.OK);

}

* AKko nismo sigurni da je zaglavlje prisutno ili nam je potrebno viSe njih nego sto
Zelimo u potpisu nase metode, tada mozemo Kkoristiti istu anotaciju, ali bez
odredenog imena.

* Koju promenljivu onda koristiti?
* Ima vise nacCina: Map, MultiValueMap, HttpHeaders objekat

EsekTpoTexHUYKH daKyaTeT y beorpaay



@RequestHeader

Primerti:
@GetMapping(”/listHeaders") @GetMapping("/multiValue")
public ResponseEntity<String> listAllHeaders( public ResponseEntity<String> multiValue(
@RequestHeader Map<String, String> headers) { @RequestHeader MultiValueMap<String, String> headers) {
headers.forEach((key, value) -> { headers.forEach((key, value) -> {
LOG.info(String.format("Header '"%s' = %s", key, value)); LOG.info(String.format(
1 "Header '"%s' = %s", key,
value.stream().collect(Collectors.joining("|"))));
return new ResponseEntity<String>( b;
String.format("Listed %d headers", headers.size()),
HttpStatus.OK); return new ResponseEntity<String>(
} String.format("Listed %d headers", headers.size()),
HttpStatus.OK);
}

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ CORS (Cross-Origin Resource Sharing)
konfiguracija

« RESTful veb servis ce ukljuciti CORS kontrolu pristupa zaglavlja u odgovoru,
ukoliko dodate anotaciju @CrossOrigin:

public Greeting greeting( String name)

System.out.println("==== get greeting ====");

return new Greeting(counter.incrementAndGet(), String.format(template, name));

* Anotacija @CrossOrigin dozvoljava deljenje resursa sa vise izvora samo za ovu
oznacCenu metodu. Podrazumevano, dozvoljeni su svi izvori, sva zaglavljai HTTP
metode naznaCene u @RequestMapping anotaciji.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@Required

* Primenjuje se na setter metodu u bean-u.

* Ukazuje da anotirani bean mora biti popunjen u vreme konfigurisanja potrebnim
svojstvom, u suprotnom Ce se baciti izuzetak BeanlnitilizationException.

* Primer:
public class Machine

{
private Integer cost;
@Required
public void setCost(Integer cost) {
this.cost = cost;

}
public Integer getCost() {

return cost;

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@Autowired

* Anotacija koja sluzi za injektiranja drugih bean-ova sa kojima saradujemo u nas
bean.

* Nakon Sto omogucimo injektiranje, mozemo koristiti automatsko uvezivanje na
svojstvima (properties), setter metodama i konstruktorima.
 Primer:
@Component
public class Customer {
private Person person;
@Autowired

public Customer(Person person) {

this.person=person;

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ @Configuration

* Anotacija klasnog nivoa. Klasa koja ima ovu oznaku koristi se od strane Spring
kontejnera kao izvor definisanja bean-a.

* Primer:
@ Configuration
public class Vehicle {
@Bean
Vehicle engine() {
return new Vehicle();

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@ @ComponentScan

* Anotacija kada u odredenom bean-u Zelimo da skeniramo paket.
» Koristi se zajedno sa anotacijom @Configuration.
« @ComponentScan osigurava da se sve klase oznacene sa @Component, kao i
njihovi derivati (ukljucujuci @Repository) pronadu i registruju kao Spring bean-ovi.
« @ComponentScan je automatski ukljucen u @SpringBootApplication.
* Primer:
@ComponentScan(basePackages = "rs.ac.bg.etf")
@Configuration
public class ScanComponent

{

// ...

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ @Bean

* Anotacija na nivou metoda. Predstavlja alternativu za <bean> oznaku u XML fajlu.

* Ovaj element govori metodi da ¢e njom upravljati Spring Container.

 Primer:
@Bean
public BeanExample beanExampleMethod()

{

return new BeanExample ();

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@ @Component

» Zarazliku od prethodnih anotacija, koji su pripadali Core Spring anotacijama,
u nastavu navodimo stereotipove koji grade Spring aplikaciju.

« @Component je anotacija na nivou klase. Koristi se za oznacavanje klase kao beana.
* Javina klasa oznacCena sa @Component se pronalazi u classpath-u.
* Radni okvir preuzima i konfiguriSe ga u kontekstu aplikacije kao Spring Bean.
* Primer:
@Component
public class Student

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ @Controller

* Anotacija na nivou klase. Oznacava klasu kao hvatac za veb zahtev (request) i Cesto
se koristi da prikaze veb stranice.

* Podrazumevano vraca string, koji oznacCava rutu na koju se redirektujemo.
* Kombinuje se sa anotacijom @RequestMapping.

* Primer:
@Controller
@RequestMapping("books")
public class BooksController {
@RequestMapping(value = "/{name}", method = RequestMethod.GET)
public Employee getBooksByName() {
return booksTemplate;

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Razlike @Controller i @RestController

« U Spring MVC, obe anotacije se koriste da definiSu veb kontrolere u MVC uzorku.
Kontroler je odgovoran za prihvatanje HTTP zahteva i vracanje HTTP odgovora
klijentu.

* Kod Spring Boot, @Controller se koristi da kreira veb kontroler koji vraca poglede
(views) u vidu HTTP odgovora (response),
dok se @RestController koristi da kreira veb servise (REST API) koji vracaju JSON
ili XML podatke.

* @RestController je kombinacija @Controller i @ReponseBody sa ciljem da
napravimo REST API u Spring Boot (uveden je od Spring 3.4 verzije).

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Servisi @Service

» Sadrze poslovnu logiku aplikacije i koriste anotaciju @Service.
 Koristi se na klasnom nivou i definiSe klasu sa poslovnom logikom.

* Ovde se obavlja obrada podataka, validacija, nekad i komunikacija sa bazom
podataka.

package rs.ac.bg.etf;
@Service
public class TestService {
public void serviceMethod() {

//poslovna logika
}

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Repozitorijumi @Repository

* Repozitorijumi se koriste za interakciju sa bazom podataka.
* Anotacija @Repository prikazuje da je klasa tipa repozitorijuma.

* (Ovaj mehanizam sluZi za enkapsuliranje skladista, preuzimanje i pretrazivanje
objekata, kroz kolekcije objekata, odnosno repozitorijumi omogucavaju dohvatanje,
azuriranje i brisanje podataka u bazi.

* Predstavlja specijalizaciju anotacije @Component, koja omogucava da se klase
automatski detektuju kroz skeniranje classpath.

package rs.ac.bg.etf;
@Repository

public class TestRepository {
public void delete() {
//persistence code

}

EsekTpoTexHUYKH daKyaTeT y beorpaay



Repozitorijumi u strukturi projekta

build.gradle

src

e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

=]
1]
H-
3

java
L— com
L— zetcode
— Application.java
— controller
\ L— MyController.java
— model
| L— Country.java
— repository
| L — CountryRepository.java
L— service
— CountryService.java
L— ICountryService.java

F____________T

resources
— application.yml
— import.sql
I— static
| L~ index.html
L templates
L— showCountries.ftlh
L test

I— java

L resources

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@Query

» Koriste anotaciju za upite @Query:

dQuery (value = "SELECT b FROM Diplomski b WHERE b.idDiplomski=?1")
Optional<Diplomski> findDiplomskiById (Integer 1d);

@Transactional

@Modifying

dQuery(value = "DELETE FROM Diplomskli b WHERE b.idDiplomski=?1")
vold deleteDiplomskiById (Integer 1id);

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@ Spring Boot arhitektura sa bazom

Repository Class Extending

CRUD Services

Dependency
Injection

i Y r Y o Ny
HTTPS Service
Client [€——»{Controllerf€—» <—>» | Model
request Layer
. A b W, b A
IPA/Spring

Data
Database

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



@ Maven - alat za upravljanje zavisnostima

* Prednosti alata za upravljanje zavisnostima:

— Pruzaju centralizovane informacije o zavisnostima, uz definisanje verzije Spring Boot na jednom
mestu. Veoma je korisno ukoliko menjamo verzije radnog okvira.

— Izbegava nepodudaranje razliCitih verzija Spring Boot biblioteka.
— Potrebno je samo da napiSemo ime biblioteke, sa specificiranjem verzije (korisno za projekte sa
viSe modula).
* Maven projekat nasleduje osobine iz poCetnog projekta spring-boot-starter-parent:
— Podrazumevanu Java kompajler verziju
— UTF-8 enkodovanje
— Odeljak sa zavisnostima iz spring-boot-dependency-pom
— Zavisnosti nasledene iz POM fajla
— Resource filtering + Plugin configuration

EsekTpoTexHUYKH daKyaTeT y beorpaay



spring-boot-starter-parent (pom.xml)

<parent>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-parent</artifactld>
<version>2.7.3</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>

* Verzija Jave (ako Zelimo da menjamo):
<properties>

<java.version>1.8</java.version>

</properties>

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



spring-boot-starter-parent (pom.xml)

. Dodavanje Maven dodatka i pakovanje u JAR fajl:
<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
</plugin>

</plugins>
</build>

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



Spring Boot bez Parent POM

<dependencyManagement>

<dependencies>
<dependency><!-- Import dependency management from Spring Boot -->
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-dependencies</artifactld>
<version>2.2.2.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>

</dependencies>

</dependencyManagement>

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



Spring Boot Application Properties

. . . . . . ] Mg _ _ R
» Radni okvir Spring Boot dolazi sa mehanizmom izgradnje za 4 & spring-boot-e@mple [000
. . . . . v s . . - - N 4 |75 5o/ mainy jav'a
konfigurisanje aplikacije koris¢enjem fajla application.properties 4 8 comjavatpoint.springbooteample
(lokacija: src/main/resources) . [4] SpringBootExampleApplication.java

4 [,_E} grc/main/resources

* Spring Boot pruza nekoliko osobina koje se mogu konfigurisati /¥ application.properties

i neke od njih imaju podrazumevane (default) vrednosti. - sro/test/java
- By JRE System Library [JavaSE-1.8]
- By Maven Dependencies

* Spring Boot dozvoljava definisanje nekog posebnog parametra

koji Zelite, ako je potrebno. = sre
ey s . . = target
» Koriscenjem ovog fajla: HELP.md
— konfiguriSe se Spring Boot radni okvir = mvnw
v . . v cpe v . i, .cmd
— nasoj aplikaciji definiSemo specificne osobine MVIW.CIT
M| pomsxml

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Primer applicaton.properties fajla

spring.datasource.url=jdbc:mysql://localhost:3306 /rti_katedra
spring.datasource.username=root
spring.datasource.password=sifral23
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.jpa.hibernate.ddl-auto=update

spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
server.error.include-stacktrace=always

spring.main.allow-circular-references=true

spring.servlet. multipart.max-file-size=2MB
spring.servlet. multipart.max-request-size=2MB

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Kategorije Spring Boot osobina (property)

1. Core Properties 9. Web Properties

2. Cache Properties 10. Templating Properties
3. Mail Properties 11. Server Properties

4. JSON Properties 12. Security Properties

5. Data Properties 13. RSocket Properties

6. Transaction Properties 14. Actuator Properties

7. Data Migration Properties 15. DevTools Properties
8. Integration Properties 16. Testing Properties

EsekTpoTexHUYKH daKyaTeT y beorpaay



Osobine aplikacije (1)

Debug false It enables debug logs.

spring.application.name It is used to set the application name.
spring.application.admin.enabled false It is used to enable admin features of the application.
spring.config.name application It is used to set config file name.
spring.config.location It is used to config the file name.

server.port 8080 Configures the HTTP server port
server.servlet.context-path It configures the context path of the application.
logging.file.path It configures the location of the log file.
spring.banner.charset UTF-8 Banner file encoding.

spring.banner.location classpath:banner.txt It is used to set banner file location.

logging.file It is used to set log file name. For example, data.log.



Osobine aplikacije (2)

spring.application.index It is used to set application index.

spring.application.name It is used to set the application name.

spring.application.admin.enabled false It is used to enable admin features for the application.

spring.config.location It is used to config the file locations.

spring.config.name application It is used to set config the file name.

spring.mail.default-encoding UTF-8 It is used to set default MimeMessage encoding.

spring.mail.host It is used to set SMTP server host. For example,
smtp.example.com.

spring.mail.password It is used to set login password of the SMTP server.

spring.mail.port It is used to set SMTP server port.

spring.mail.test-connection false It is used to test that the mail server is available on startup.

spring.mail.username It is used to set login user of the SMTP server.



Osobine aplikacije (3)

spring.main.sources

server.address

server.connection-timeout

server.context-path
server.port 8080

server.server-header

server.servlet-path /
server.ssl.enabled

spring.http.multipart.enabled True

spring.servlet.multipart.max-file-size 1MB

spring.mvc.async.request-timeout

It is used to set sources for the application.

It is used to set network address to which the server should
bind to.

It is used to set time in milliseconds that connectors will wait for
another HTTP request before closing the connection.

It is used to set context path of the application.
It is used to set HTTP port.

It is used for the Server response header (no header is sent if
empty)
It is used to set path of the main dispatcher servlet

It is used to enable SSL support.

It is used to enable support of multi-part uploads.

It is used to set max file size.

It is used to set time in milliseconds.



Osobine aplikacije (4)

spring.mvc.date-format
spring.mvc.locale
spring.social.facebook.app-id
spring.social.linkedin.app-id

spring.social.twitter.app-id

security.basic.authorize-mode role
security.basic.enabled true
Spring.test.database.replace any
Spring.test.mockmvc.print default
spring.freemaker.content-type text/html

server.server-header
spring.security.filter.dispatcher-type async, error, request

spring.security.oauth2.client.registration.*

It is used to set date format. For example, dd/MM/yyyy.
It is used to set locale for the application.

It is used to set application's Facebook App ID.

It is used to set application's LinkedIn App ID.

It is used to set application's Twitter App ID.

It is used to set security authorize mode to apply.

It is used to enable basic authentication.

Type of existing DataSource to replace.

MVC Print option

Content Type value
Value to use for the server response header.
Security filter chain dispatcher types.

OAuth client registrations.



@ Starteri

* Spring Boot pruza veci broj startera (pocetnih podesavanja), koji omogucavaju laksi
i brzi razvoj. Spring Boot Starteri su deskriptori zavisnosti.

* U ovom radnom okviru, svi starteri imaju slicno imenovanje:
spring-boot-starter-* (gde * oznacava odredeni tip aplikacije)

* Na primer, ako zZelimo da koristimo Spring i JPA za pristup bazama podataka,
mi cemo ukljuciti zavisnost spring-boot-starter-data-jpa u nas pom.xml fajl.

» Takode, mogu biti ukljuceni starteri (pokretaci) sa neke trece strane.

« Starter treCe strane pocCinje imenom projekta. Na primer ako je projekat trece
strane imenovan sa etfbgd, onda Ce zavinost biti: etfbgd-spring-boot-starter

EsekTpoTexHUYKH daKyaTeT y beorpaay



Spring Boot starteri

Naziv o

spring-boot-starter-thymeleaf
spring-boot-starter-data-couchbase
spring-boot-starter-artemis
spring-boot-starter-web-services
spring-boot-starter-mail
spring-boot-starter-data-redis

spring-boot-starter-web

spring-boot-starter-data-gemfire
spring-boot-starter-activemq
spring-boot-starter-data-elasticsearch
spring-boot-starter-integration

spring-boot-starter-test

It is used to build MVC web applications using Thymeleaf views.

It is used for the Couchbase document-oriented database and Spring Data Couchbase.
It is used for JIMS messaging using Apache Artemis.

It is used for Spring Web Services.

It is used to support Java Mail and Spring Framework's email sending.

It is used for Redis key-value data store with Spring Data Redis and the Jedis client.

It is used for building the web application, including RESTful applications using Spring
MVC. It uses Tomcat as the default embedded container.

It is used to GemFire distributed data store and Spring Data GemFire.
It is used in JMS messaging using Apache ActiveMQ.
It is used in Elasticsearch search and analytics engine and Spring Data Elasticsearch.

It is used for Spring Integration.

It is used to test Spring Boot applications with libraries, including JUnit, Hamcrest, and
Mockito.

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



Spring Boot starteri (2)

\F:VA\"

spring-boot-starter-jdbc It is used for JDBC with the Tomcat JDBC connection pool.

spring-boot-starter-mobile It is used for building web applications using Spring Mobile.

spring-boot-starter-validation It is used for Java Bean Validation with Hibernate Validator.

spring-boot-starter-hateoas It is used to build a hypermedia-based RESTful web application with Spring MVC and
Spring HATEOAS.

spring-boot-starter-jersey It is used to build RESTful web applications using JAX-RS and Jersey. An alternative to
spring-boot-starter-web.

spring-boot-starter-data-neo4;j It is used for the Neo4j graph database and Spring Data Neo4,j.

spring-boot-starter-data-ldap It is used for Spring Data LDAP.

spring-boot-starter-websocket It is used for building the WebSocket applications. It uses Spring Framework's
WebSocket support.

spring-boot-starter-aop It is used for aspect-oriented programming with Spring AOP and Aspect).

spring-boot-starter-amqp It is used for Spring AMQP and Rabbit MQ.

spring-boot-starter-data-cassandra It is used for Cassandra distributed database and Spring Data Cassandra.

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



\F:VA\"

Spring Boot starteri (3)

spring-boot-starter-social-facebook
spring-boot-starter-jta-atomikos
spring-boot-starter-security
spring-boot-starter-mustache
spring-boot-starter-data-jpa
spring-boot-starter
spring-boot-starter-groovy-templates
spring-boot-starter-freemarker
spring-boot-starter-batch
spring-boot-starter-social-linkedin
spring-boot-starter-cache

spring-boot-starter-data-solr

spring-boot-starter-data-mongodb

It is used for Spring Social Facebook.

It is used for JTA transactions using Atomikos.

It is used for Spring Security.

It is used for building MVC web applications using Mustache views.

It is used for Spring Data JPA with Hibernate.

It is used for core starter, including auto-configuration support, logging, and YAML.
It is used for building MVC web applications using Groovy Template views.
It is used for building MVC web applications using FreeMarker views.

It is used for Spring Batch.

It is used for Spring Social LinkedIn.

It is used for Spring Framework's caching support.

It is used for the Apache Solr search platform with Spring Data Solr.

It is used for MongoDB document-oriented database and Spring Data MongoDB.

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay 63



Spring Boot starteri (4)

Naziv o

spring-boot-starter-jooq

spring-boot-starter-jta-narayana

spring-boot-starter-cloud-connectors

spring-boot-starter-jta-bitronix

spring-boot-starter-social-twitter

spring-boot-starter-data-rest

It is used for jOOQ to access SQL databases. An alternative to spring-boot-starter-data-
jpa or spring-boot-starter-jdbc.

It is used for Spring Boot Narayana JTA Starter.

It is used for Spring Cloud Connectors that simplifies connecting to services in cloud
platforms like Cloud Foundry and Heroku.

It is used for JTA transactions using Bitronix.

It is used for Spring Social Twitter.

It is used for exposing Spring Data repositories over REST using Spring Data REST.

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



Produkcioni i tehnicki starteri

Naziv o

spring-boot-starter-actuator

spring-boot-starter-remote-shell

It is used for Spring Boot's Actuator that provides production-ready features to help
you monitor and manage your application.

It is used for the CRaSH remote shell to monitor and manage your application over
SSH. Deprecated since 1.5.

Naziv o

spring-boot-starter-undertow

spring-boot-starter-jetty

spring-boot-starter-logging

spring-boot-starter-tomcat

spring-boot-starter-log4;j2

It is used for Undertow as the embedded servlet container. An alternative to spring-
boot-starter-tomcat.

It is used for Jetty as the embedded servlet container. An alternative to spring-boot-
starter-tomcat.

It is used for logging using Logback. Default logging starter.

It is used for Tomcat as the embedded servlet container. Default servlet container
starter used by spring-boot-starter-web.

It is used for Log4j2 for logging. An alternative to spring-boot-starter-logging.

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



Spring Boot Starter za veb razvoj

* Spring veb koristi Spring MVC, REST i Tomcat, kao podrazumevani ugradeni veb
server. Ubacivanjem spring-boot-starter-web zavisnosti, tranzitivno se povlace sve
zavisnosti neophodne za razvoj veb aplikacija:

— org.springframework.boot:spring-boot-starter

— org.springframework.boot:spring-boot-starter-tomcat
— org.springframework.boot:spring-boot-starter-validation
— com.fasterxml.jackson.core:jackson-databind

— org.springframework:spring-web

— org.springframework:spring-webmvc

* Primer:

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-web</artifactld>
<version>2.2.2.RELEASE</version>

</dependency>

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Automatska konfiguracija

* Spring-boot-starter-web konfiguriSe sledecCe stvari:
* Dispatcher Servlet
» Stranicu sa greskom (error page)
* Web JARs za upravljanje statickim zavisnostima
* Ugradeni servlet kontejner

» Svaka Spring Boot aplikacija ima ugraden server za podizanje aplikacije.

 Podrazumevani ugradeni server je Tomcat. Postoje podrska za joS 2 servera:
Jetty Server i Undertow Server.

» Kada se koristi drugi server, Tomcat mora da se iskljuci, da ne bi doSlo do konflikta
izmedu dva veb servera.

EsekTpoTexHUYKH daKyaTeT y beorpaay



i

Zamena servera u podesavanjima

<dependency>

<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-web</artifactld>
<exclusions>
<exclusion>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-tomcat</artifactld>
</exclusion>
</exclusions>

</dependency>

<dependency>

<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-jetty</artifactld>

</dependency>

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ JPA - Java Persistence API

* Za komunikaciju sa relacionom MySQL bazom mozemo Kkoristiti Java Persistence API
(JPA), koji omogucava mapirane Java objekata na entitete u bazi, Cime se olaksava
pristup i manipulacija podacima.

* Sve operacije sa bazom podataka, kao Sto su Citanje, azurirane, brisanje i dodavanje
obavljace se preko JPA.

» Koristi se: platformski nezavistan, objektno orijentisani upitni jezik JPQL (Java
Persistent Query Language).

* Prednosti JPA:

— JPA izbegava pisanje DDL zasnovan na SQL dijalektu, umesto toga mapira u XML ili koristi Java
anotacije. Takode, JPA izbegava pisanje DML zasnovanom na specificnom dijalektu SQL.

— JPA omogucava da cuvamo i ucCitavamo Java objekte i grafove bez ikakvog DML jezika.

— Kada izvrsavamo JPQL upite, on omogucava da izrazimo upite u obliku Java entiteta, a ne kroz
prirodne SQL tabele i kolone.

EsekTpoTexHUYKH daKyaTeT y beorpaay



Configured By ¥

Arhitektura Java Persistence API

package javax.persistence

Persistence

¢ Creates
created during app startup

small unit of work with database

EntityTransaction
Lives for short time. Removed by:
database commit
-database rollback

Query database. Uses SOL/JPOL

Creates

)" EntityManagerFactory .
¢ Creates

EntityManager

¢ Manages

objects that persists into database with
the help of EntityManager

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay

Persistence - klasa koja sadrzi staticke
metode za dobijanje EntityManagerFactory
instance.

EntityManagerFactory - klasa fabrika
EntityManager, koja kreira i upravlja sa
viSe instanci EntityManager.
EntityManager - interfejs koji kontroliSe
operacije perzistencije nad objektima. Radi
za Query instancu.

Entity - to su perzistencioni objekti koji
cuvaju zapis u bazi podataka.
Persistence Unit - definiSe skup svih
entitetskih klasa. U aplikaciji,
EntityManager instance upravljaju tim.

EntityTransaction — ima 1-1 vezu za
EntityManager.

Query - interfejs koji implementira svaki
JPA potrosac.



Relacije izmedu JPA klasa i interfejsa

EntityManagerractory EntityTransaction

EntityManager

Persistence
javax.persistence

Entity

JPA Class Relationship

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay

Relacija izmedu EntityManager i EntityTransaction je
1-1. Postoji po jedna instanca EntityTransaction za
svaku EntityManager operaciju.

Relacija izmedu EntityManagerFactory i EntityManager
je 1-prema-viSe. Postoji jedna klasa fabrika za intance
EntityManager.

Veza izmedu EntityMaanger i Query je 1-prema-vise.
Moze se izvrSiti viSe upita nad jednom instancom
EntityManager klase.

Veza izmedu EntityManager i Entity je 1-prema-vise.
Instanca EntityManager moze upravljati sa vise
entiteta.



@ Spring Data JPA

e Spring Data je izvorni Spring projekat visokog nivoa.
* Svrha: objediniti i omoguciti jednostavan pristup razliCitim vrstama skladista, i
relacionim bazama i NoSQL skladistima podataka, kroz DAL.

 C(Cilj: Implementacijom nove aplikacije, treba da se fokusiramo na poslovnu logiku,
ne na tehnicku slozenost i Sablonski programski kod.

* Spring Data JPA dodaje sloj na vrh JPA i on Koristi sve osobine definisane kroz JPA
specifikaciju: entitet, mapiranje asocijacija, mogucnosti izgadnje upita kroz JPA.

» Spring Data JPA dodaje svoje osobine kao Sto su implementacija Sablona
repozitorijuma (bez koda) i kreiranje upita baze podataka iz naziva metode.

* Spring Data JPA obraduje vecinu kompleksnog pristupa bazama kroz JDBC i ORM
(objektno relaciono mapiranje).

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Spring Data JPA - osobine

e Triglavne prednosti su:

— Repozitorijum bez Koda - Najpopularniji projektni obrazac za perzistenciju. Omogucava nam
da implementiramo nas kod na viSem nivou apstrakcije.

— Redukovanje sablonskog koda - Obezbeduje podrazumevanu implementaciju za svaki metod
preko interfejsa repozitorijuma. To znacCi da nemamo potrebu implementirati operacije Citanja i
pisanja.

— Generisani upiti - Generisanje upita za bazu na osnovu imena metoda. Ako upit nije previse
kompleksan, treba da definiSemo metod na interfejsu naseg repozitorijuma sa imenom koji
pocinje sa findBy. Nakon definisanja metoda, Spring parsira naziv metode i kreira upit:

public interface EmployeeRepository extends CrudRepository<Employee, Long>

{

Employee findByName(String name);

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ JPQL - Java Persistence Query Language

* Spring generise JPQL upite, zasnovane na imenu metode.

« Upitseizvodiiz potpisa metode. On postavlja vrednost parametra, izvrSava upiti
vraca rezultat.

* Postoje joS neke karakteristike ovog jezika kao Sto su:
— MoZe da integriSe poseban kod za repozitorijum.
— Podrzava transparentnu reviziju i apstrakciju objektno-relacionog mapiranja.
— Implementira osnovnu domensku klasu koja obezbeduje osnovna svojstva.

— Podrzava nekoliko modula, kao Sto su: Spring Data JPA, Spring Data MongoDB, Spring Data REST,
Spring Data Cassandra, itd.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Spring Data JPA repozitorijumi

CrudRepository - nudi standarde operacije Create, Read, Update, Delete.
Sadrzi metode kao Sto su: findOne( ), findAll( ), save( ), delete( ), itd.

PagingAndSortingRepository — proSiruje CrudRepozitory i dodaje findAll( ) metode,
uz omogucavanje sortiranja i preuzimanja podataka koje cemo izdeliti (paginacija).
JpaRepository - JPA specifican repozitorijum, koji proSiruje oba repozitorijuma
(CrudRepository i PagingAndSortingRepository) i dodaje specificne metode,

kao Sto je flush( ) da bi se pokrenula operacija flush za perzistiranje konteksta.
Hibernate je implementacija JPA, i predstavlja jedan od najpopularnijih ORM radnih
okvira. JPA je samo API koji definiSe specifikaciju.

Uz pomoc Hibernate vezujemo objekte sa tabelama. On osigurava da se podaci

Citaju iz baze/Cuvaju u bazi, na osnovu mapiranja. On pruza takode dodatne
funkcije na vrhu JPA.

Postoje i druge implementacije JPA, kao sto su EclipseLink, DataNucleus, itd.

EsekTpoTexHUYKH daKyaTeT y beorpaay




@ ORM

 ORM - mapiranje Javinih objekata u Host ORM Layer
Application
tabele baze podataka. —
e ORM mapiranje radi kao most izmedu rersstence f ———
relacionih baza podataka (tabele i Vendor

zapisi) i Java aplikacija (klase i objekti). java

Persistence
API

Vendor JPA
implemen- Database
tation

* ORM sloj je sloj za prilagodavanje koji
prilagodava jezik objektnih grafova u
strukturalni jezik SQL.

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



@ Spring Boot aktuatori (pokretaci)

» Spring Boot aktuatori su potprojekti koji ukljuCuju odredeni broj dodatnih funkcija
koji nam pomazu da nadgledamo i upravljamo Spring Boot aplikacijom.

» Aktuatori sadrze krajnje tacke aktuatora (mesta gde resursi zZive).

* MoZemo Kkoristiti HTTP i JMX krajnje tacke za upravljanje i nadgledane Spring Boot
aplikacije.

* Ako Zelimo da dobijemo funkcionalnosti spremne za produkcionu aplikaciju,
tada koristimo Spring Boot aktuatore.

* Tri glavne karakteristike aktuatora su:
— krajnje taCke (eng. endpoints),
— metrike (eng. metrics),

— revizije (eng. audit).

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Karakteristike aktuatora

* Krajnje tacke aktuatora omogucavaju nadgledanje i interakciju sa aplikacijom.

* Spring Boot pruza brojne ugradene krajnje tacke, ali mozemo dodati i sopstvene
krajnje tacke. Mi utiCemo na ukljucivanje ili iskljucivanje krajnje tacke individualno.

* Vecina aplikacija bira HTTP, gde je ID krajnje tacke zajedno sa prefiksom /actuator,

mapiran u URL adresi. Na primer: krajnja tacka /health pruza osnovne informacije
o stanju aplikacije, pa mu se pristupa preko: /actuator/health

» Spring Boot Aktuator obezbeduje dimenzionalne metrike, uz pomo¢ Mikrometra.

* Mikrometar, integrisan u Spring Boot, je biblioteka za instrumentaciju, koja pokrece
isporuku aplikativnih metrika iz Springa.

* Mikrometar obezbeduje interfejse, neutralne za proizvodaca, kao Sto su: timers,
gauges, counters, long task timers, itd.

* Spring Boot pruza fleksibilan okvir revizije (dogadaji se objavljuju u
AuditEventRepository). Dogadaji autentifikacije se automatski objavljuju.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Omogucavanje Spring Boot aktuatora

* Injektiranjem zavisnosti spring-boot-starter-acutator, u pom.xml fajlu:

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-actuator</artifactld>
<version>2.2.2.RELEASE</version>

</dependency>

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



Spring Boot aktuator - krajnje tacke
. m | Korieme | Default_

actuator It provides a hypermedia-based discovery page for the other endpoints. It requires Spring True
HATEOAS to be on the classpath.

auditevents It exposes audit events information for the current application. True
autoconfig It is used to display an auto-configuration report showing all auto-configuration candidates and True
the reason why they 'were' or 'were not' applied.
beans It is used to display a complete list of all the Spring beans in your application. True
configprops It is used to display a collated list of all @ConfigurationProperties. True
dump It is used to perform a thread dump. True
env It is used to expose properties from Spring's ConfigurableEnvironment. True
flyway It is used to show any Flyway database migrations that have been applied. True
health It is used to show application health information. False
info It is used to display arbitrary application info. False

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



Spring Boot aktuator - krajnje tacke (2)
. m | Korieme | Default_

loggers It is used to show and modify the configuration of loggers in the application. True
liquibase It is used to show any Liquibase database migrations that have been applied. True
metrics It is used to show metrics information for the current application. True
mappings It is used to display a collated list of all @RequestMapping paths. True
shutdown It is used to allow the application to be gracefully shutdown. True
trace It is used to display trace information. True

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



@ Spring Boot aktuator podeSavanja

* Spring Boot omogucava sigurnost za sve krajnje tacke aktuatora.
Koristi autenftifikaciju koja daje korisnicki ID kao korisnika i nasumicno generisanu
lozinku.

* Mi moZemo pristup krajnjim taCkama ograniciti, tako Sto cemo prilagoditi sigurnost
osnovne autentifikacije krajnjim tackama.

* Primer:
management.security.enabled=true
management.security.roles=ADMIN

security.basic.enabled=true
security.user.name=admin

security.user.passowrd=admin

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@ Spring Boot JDBC

* Spring Boot obezbeduje starter i biblioteke za povezivanje aplikacije sa JDBC.

* U Spring Boot JDBC, bean-ovi koji se povezuju sa bazom, kao Sto su DataSource,
JdbcTemplate, NamedParameterJdbcTemplate, se autokonfigurisSu i kreiraju tokom
pokretanja. Mozemo automatski povezati (sa @Autowired) ove klase, ako zelimo da
ih koristimo.

e Primer:

@Autowired

JdbcTemplate jdbcTemplate;

@Autowired

private NamedParameter]JdbcTemplate jdbcTemplate;

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Udruzivanje (pooling) JDBC konekcija

* Udruzivanje JDBC konekcija je mehanizam koji upravlja visestrukim zahtevima za
povezivanje sa bazom podataka.

* (Olaksava ponovnu upotrebu veze, memoriSe kes svih veza sa bazama (skup veza).

* Modul za udruzivanje veza odrzava kao sloj na vrhu bilo kog standardnog JDBC
drajverskog proizvoda.

» U fajlu application.properties konfiguriSe se DataSource i mehanizam udruzivanja
Zasto je kreiranje konekcije skupo?

A Connection Pool DBMS
— Otvaranje konekcije ka bazi PP ° ( ) TN
o - o 1 e, Connection connect
— Autentifikacija korisnika Data Access Object <3
: : 1y D %

— Kreiranje TCP prikljucka za (DAO) -y Database
v . . . [=]
¢itanje/upisivanje podataka ’ > Connection Y

. . . . . v annn \'h__-_—ﬂ'/

— Slanje/primanje podataka preko prikljucka - /

— Zatvarane konekcije

— Zatvaranje TCP prikljucka

EsekTpoTexHUYKH daKyaTeT y beorpaay



Sta je uloga udruzivanja (pooling)?
* Povecava brzinu pristupa podacima i smanjuje broj veza sa bazom podataka za
aplikaciju.

* PoboljSava performanse aplikacije. PG

Client 1

e

1. A connaction pool with 2 connected cliants 2. A new clisnt #3 is assigned a free connaction

 (Glavni zadaci su:

— Upravljanje dostupnom konekcijom Client 2

Client 2

— Dodeljivanje nove konekcije Client 3

— Zatvaranje konekcije

Connection Pool Connaction Pool

——

Client 2 Client 2
Data Source Data Source
Client 3
3. Client #1 is disconnected, and free 4, Client #3 is disconnected (oo free

a connection for use another conneclion

EsekTpoTexHUYKH daKyaTeT y beorpaay 85



@ Radni okviri za udruzivanje: karakteristike

* Postoji veci broj radnih okvira, koje biramo na osnovu karakteristika.

* Pouzdanost:
— Lako se konfigurise.
— Obratite paznju na otvorene defekte u biblioteci.
— Voditi racuna o problemima sa zastojima (deadlocks).

Performanse:
— Obratite paZnju na podeSavanja i okruzenje za testiranje.
— Rezultati testiranja u velikoj meri zavise od podesSavanja konfiguracije.

Podrska:

— Dobra dokumentacija.

— Velika aktivna zajednica i Siroka upotreba.

Najpopularniji radni okviri: Tomcat JDBC i HikariCP.

EsekTpoTexHUYKH daKyaTeT y beorpaay



Radni okvir HikariCP

* Najbrzi mehanizam za upravljanje konekcijama.

* Prednosti radnog okvira:
— dizajniran da bude deadlock-free;
— moZe sam otKriti curenje konekcija;
— pruZza dobre podrazumevane vrednosti za konfiguraciju;

— pronalazi dobru ravnotezu izmedu nepreopterecenih korisnika sa mnogo konfiguracije i mnogo

funkcionalne konﬁguracue, Connection Cycle ops/ms Statement Cycle ops/ms

— ultralaan (samo 130Kb); B Croonsraned _— e

47608

— odli¢ni rezultati testova uporedivanja
(benchmark);

— mali broj defekata (bagova).

 Nema formule za max skup
no_connections = ((2 * core_count) + no_of disks)

GEG1 5960 16659 17944

2222
- 144.“ i . |] - -
234 248 a2 ) q
. e D | — |-. — |
c3p0 dbcp2 ib dbcpZ c3pd

tomcat vibur hikari viour tomeat

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay 87



Primer sa Hikari ili Tomcat mehanizmom

<dependency> * Nacin da HikariCP zamenimo sa Tomcat mehanizmom.
<groupld>org.springframework.boot</groupld> * Ne piSemo klasu @Configuration i programski
<artifactld>spring-boot-starter-data-jpa</artifactld> defineSemo @Bean sa izvorom podataka.
<exclusions> * Spring Boot moZe autokonfigurisati
<exclusion> H2 unutarmemorijsku bazu:
<groupld>com.zaxxer</groupld> <dependency>
<artifactld>HikariCP</artifactld> <groupld>com.h2database</groupld>
</exclusion> <artifactld>h2</artifactld>
</exclusions> <version>2.1.214</version>
</dependency> <scope>runtime</scope>
<dependency> </dependency>
<groupld>org.apache.tomcat</groupld> * Alternativno, preskakanje algoritma za

<artifactld>tomcat-jdbc</artifactld> pretr aéivanja Skupa konekcija:

<version>10.1.7</version>
//u fajlu application.properties:

spring.datasource.type=org.apache.tomcat.jdbc.pool.DataSource
// other spring datasource properties

</dependency>

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Dodatna svojstva u Tomcat mehanizmu

* Za optimizaciju performansi i ispunjavanje nekih specificnih zahteva mozemo dodati
u fajlu application.properties, jos neka svojstva:

spring.datasource.tomcat.initial-si1ze=15
spring.datasource.tomcat.max-wai1t=20000
spring.datasource.tomcat.max-active=50
spring.datasource.tomcat.max—-1dle=15
spring.datasource.tomcat.min-1dle=8

spring.datasource.tomcat.default-auto-commit=true

EsekTpoTexHUYKH daKyaTeT y beorpaay



Primer bez mehanizma upravljanja konekcijama

//DB.java « Realizujemo klasu sa @Configuration
@Configuration anotacijom i metodu koja implementira
public class DB { izvor podataka.
* Postavljamo drajver koji koristimo, URL
@Bean putanju do instance baze, parametre
public static DataSource source(){ autentifikacije.
DriverManagerDataSource ds = new DriverManagerDataSource(); * U sloju podataka, repozitorijumske klase
ds.setDriverClassName("com.mysql.cj.jdbc.Driver"); imaju metode koje izvrSavaju upite nad
ds.setUrl("jdbc:mysql://localhost:3306 /mojabaza"); bazom i koriste ovu konekciju.

ds.setUsername("root");
ds.setPassword("");

return ds;

EsekTpoTexHUYKH daKyaTeT y beorpaay



Prednosti Spring Boot u odnosu na Spring
Spring Boot

Neophodna samo zavisnost U Spring JDBC, viSe zavisnosti je neophodno da se
spring-boot-starter-jdbc konfiguriSe kao Sto su spring-jdbc i spring-context
Automatski konfigurise Datasource bean, In Spring JDBC, it is necessary to create a database
ako se ne odrzava eksplicitno. bean either using XML or javaconfig.

Ako ne Zelimo da koristimo bean, mi ¢emo postaviti
svojstvo spring.datasource.initialize na
vrednost false.

Nije potrebno da registrujemo Template bean-ove, Moraju se zasebno registrovati Template bean-ovi

jer on automatski registruje bean-ove. kao Sto su PlatformTransactionManager,
JDBCTemplate, NamedParameterjdbcTemplate

Sve sKkripte za inicijalizaciju baze podataka su Ukoliko bilo koja skripta za inicijalizaciju (kao Sto su

memorisane u .SQL fajlu, i automatski se izvrSavaju. brisanje ili kreiranje tabele) je kreirana u SQL fajlu, ta
informacija je potrebna da se eksplicitno stavi u
konfiguraciju.



Razlike ]DBC i Hibernate
JDBC

JDBC je tehnologija. Hibarnate je radni okvir za objektno-relaciono
mapiranje (ORM).

Korisnik je odgovoran za otvaranje i zatvaranje Sistem u realnom vremenu brine o otvaranju i

konekcija. zatvaranju konekcija.
Nije podrzano lenjo ucitavanje (lazy loading). PodrZzano je lenjo wucitavanje, koje daje bolje
performanse.

Ne podrZzava asocijacije (konekcije izmedu dve Podrzane su asocijacije.
odvojene klase).




@ Spring Boot CRUD operacije

 CRUD - Create, Read/Retrieve, Update, Delete;
4 osnovne funkcije za perzistiranje skladista podataka:
— CREATE operacija: IzvrSava INSERT naredbu za kreiranje novog zapisa.
— READ operacija: Cita zapis tabele na osnovu ulaznog parametra.
— UPDATE operacija: IzvrSava naredbu za aZuriranje tabele, na osnovu ulaznog parametra.
— DELETE operacija: BriSe specifican red u tabeli, na osnovu ulaznog parametra.

 CRUD je orijentisan na podatke i standardizovanu upotrebu HTTP akcija:
— POST: kreiranje novog resursa
— GET: Citane resursa
— PUT: aZuriranje postojeceg resursa
— DELETE: brisanje resursa

* Unutar baze podataka, svaka od ovih operacija se direktno mapira u niz komandi.
* (Odnos sa RESTful API je malo sloZeniji.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Spring Boot CRUD operacije

* Postoji dosta opcija za izvrsavanje CRUD operacija.
* Jedna od najefikasnijih: kreiranje skupa uskladistenih (stored) procedura u SQL.
* Svako slovo CRUD moZe se mapirati u SQL naredbu i HTTP metodu.

Operacija SQL upit HTTP radnja RESTful veb servis
Create INSERT PUT/POST POST
Read SELECT GET GET
Update UPDATE PUT/POST/PATCH PUT

Delete DELETE DELETE DELETE

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Spring Boot CRUD repozitorijum

* Spring Boot obezbeduje interfejs, nazvan CrudRepository, koji ima ugradene
metode za CRUD operacije. On je izveden iz Repository interfejsa.

* Definisan u paketu: org.springframework.data.repository.

e Sintaksa: public interface CrudRepository<T,ID> extends Repository<T,ID>
T - tip domena kojim skladiste upravlja;

.. . . N » _ Spring Data Repository Interface
ID - tip identifikatora entiteta kojim skladiste upravlja.

A

Repository

* Primer:
public interface StudentRepository e 3 Interface
extends Crud Repository<Student, Integer> { CrudRepository belong to Spring
} Data Commons
* JPA repozitorijum pruza JPA metode kao Sto su flushing, PagingAndSorting
e o . . . . Repository 4
perzistiranje konteksta, brisanje zapisa u grupama.
e Primer: JpaRepository I Spring Data JPA

public interface BookDAO extends JpaRepository { }

EnexTpoTexHU4YKHU dakyaTeT y beorpaay 95



Razlike izmedu repozitorijuma CRUD i JPA

* Interfejsi omogucavaju Springu da pronade interfejs repozitorijuma i kreira proksi

objekte do njih.
* Interfejsi pruzaju metode koje nam omogucavaju da izvrsimo neke uobicajne
operacije.
CrudRepository JpaRepository

Ne pruza nijednu metodu za paginaciju i sortiranje. ProSiruje PagingAndSortingRepository, koji pruza sve
metode za implementiranje paginacije.

Radi kao interfejs markera. ProSiruje oba repozitorijuma:
CrudRepository i PagingAndSortingRepository.

Pruza samo osnovne CRUD funkcije, kao Sto su: Priza neke dodatne metode, zajedno sa metodama iz

findByld(), findAll(), itd. PagingAndSortingRepository i CrudRepository.

Primer: flush(), deletelnBatch().

Koristimo kada nam nisu neophodne funkcije koje nam  Koristimo kada Zelimo da implementiramo paginaciju i
nudi JpaRepository i PagingAndSortingRepository. funkcionalnost sortiranja u aplikaciji.

EsekTpoTexHUYKH daKyaTeT y beorpaay



Primer sa CRUD operacijama

* Primer sa jednim modelom, i po jednim kontrolerom, servisom i repozitorijumom.

package rs.ac.bg.etf. models; @Column
import javax.persistence.Column; private int price;
import javax.persistence.Entity; public int getBookid(){ return bookid; }
import javax.persistence.ld; public void setBookid(int bookid){ this.bookid = bookid; }
import javax.persistence.Table; public String getBookname(){ return bookname; }
@Entity public void setBookname(String bookname){
@Table this.bookname = bookname; }
public class Books { public String getAuthor(){ return author; }
//Defining book id as primary key public void setAuthor(String author){ this.author = author; }
@Id public int getPrice(){ return price; }
@Column public void setPrice(int price){ this.price = price; }
private int bookid; }
@Column
private String bookname;
@Column
private String author;

EsekTpoTexHUYKH daKyaTeT y beorpaay



Primer sa CRUD operacijama (2)

package rs.ac.bg.etf.controllers;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;
import rs.ac.bg.etf. models.Books;
import rs.ac.bg.etf.services.BooksService;
@RestController
public class BooksController {

@Autowired

BooksService booksService;

@GetMapping("/book")

private List<Books> getAllBooks(){

return booksService.getAllBooks(); }

EsekTpoTexHUYKH daKyaTeT y beorpaay

@GetMapping("/book/{bookid}")
private Books getBooks(@PathVariable("bookid") int bookid){
return booksService.getBooksByld(bookid); }
@DeleteMapping("/book/{bookid}")
private void deleteBook(@PathVariable("bookid") int bookid){
booksService.delete(bookid);
}
@PostMapping("/books")
private int saveBook(@RequestBody Books books){
booksService.saveOrUpdate(books);
return books.getBookid();
}
@PutMapping("/books")
private Books update( @RequestBody Books books){
booksService.saveOrUpdate(books);
return books;

}
}



Primer sa CRUD operacijama (3)

package rs.ac.bg.etf.services;
import java.util.ArrayList;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import rs.ac.bg.etf. models.Books;
import rs.ac.bg.etf.repository.BooksRepository;
@Service
public class BooksService {
@Autowired
BooksRepository booksRepository;
//dohvatanje svih zapisa koriscenjem ugradjene metode iz CrudRepository
public List<Books> getAllBooks(){
List<Books> books = new ArrayList<Books>();
booksRepository.findAll().forEach(books1 -> books.add(books1));
return books;
}
public Books getBooksByld(int id){
return booksRepository.findByld(id).get(); }

//snimanje zapisa koriscenjem metode save() iz
//CrudRepository

public void saveOrUpdate(Books books){
booksRepository.save(books);

}

public void delete(int id){
booksRepository.deleteByld(id);

}

public void update(Books books, int bookid){
booksRepository.save(books);

}
}

EsekTpoTexHUYKH daKyaTeT y beorpaay

package rs.ac.bg.etf.repository;

import
org.springframework.data.repository.CrudRepository;

import rs.ac.bg.etf. models.Books;

public interface BooksRepository
extends CrudRepository<Books, Integer> {

}



Validacija za RESTful servise
» KoriScenje Java Validation API:

package rs.etf.server.main.user; @DeleteMapping("/users/{id}")

import java.net.URI; public void deleteUser(@PathVariable int id){

import java.util.List; User user= service.deleteByld(id);

import javax.validation.Valid; if(user==null) throw new UserNotFoundException("id: "+ id);
}

@RestController @PostMapping("/users")

public class UserResource { public ResponseEntity<Object> createUser(@Valid
@Autowired @RequestBody User user){
private UserDaoService service; User sevedUser=service.save(user);
@GetMapping("/users") URI location=ServletUriComponentsBuilder.

fromCurrentRequest().path("/{id}").
return service.findAll(); } buildAndExpand(sevedUser.getld()).toUri();

@GetMapping(" /users/{id}") return ResponseEntity.created(location).build();

public User retriveUser(@PathVariable int id){ }
User user= service.findOne(id); }

public List<User> retriveAllUsers(){

if(user==null) throw new UserNotFoundException("id: "+ id);

return user;

EsekTpoTexHUYKH daKyaTeT y beorpaay



Validacija za RESTful servise (2)

package rs.etf.server.main.user;
import java.util.Date;
import javax.validation.constraints.Past;
import javax.validation.constraints.Size;
public class User {

private Integer id;

@Size(min=5,

message= "Ime treba da ima najmanje 5 karaktera")

private String name;

@Past

private Date dob;

//default constructor
protected User(){ }
public User(Integer id, String name, Date dob){
super();
this.id = id;
this.name = name;
this.dob = dob;

EsekTpoTexHUYKH daKyaTeT y beorpaay

public Integer getld(){ return id; }
public void setld(Integer id){ this.id = id; }
public String getName(){ return name; }
public void setName(String name){ this.name = name; }
public Date getDob(){ return dob; }
public void setDob(Date dob){ this.dob = dob; }
@Override
public String toString(){
//return "User [id="+id+", name="+name+", dob="+dob + "]";

return String.format("User [id=%s, name=%s, dob=%s]", id,
name, dob);




Validacija za RESTful servise (3)

package rs.etf.server.main;

import java.util.Date;

import org.springframework.http.HttpHeaders;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.MethodArgumentNotValidException;
import org.springframework.web.bind.annotation.ControllerAdvice;

import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.context.request.WebRequest;

import org.springframework.web.servlet.mvc.method.annotation.ResponseEntityExceptionHandler;
import com.javatpoint.server.main.exception.ExceptionResponse;

import com.javatpoint.server.main.user.UserNotFoundException;

@ControllerAdvice //Definisemo obradu izuzetka za sve izuzetke
@RestController

public class CustomizedResponseEntityExceptionHandler extends ResponseEntityExceptionHandler {

EsekTpoTexHUYKH daKyaTeT y beorpaay



Validacija za RESTful servise (4)

@ExceptionHandler(Exception.class)
public final ResponseEntity<Object> handleAllExceptions(Exception ex, WebRequest request) {
//definisanje structure odgovora za izuzetak
ExceptionResponse exceptionResponse= new ExceptionResponse(new Date(), ex.getMessage(), request.getDescription(false));
return new ResponseEntity(exceptionResponse, HttpStatus.INTERNAL_SERVER_ERROR); //vracanje strukture odgovora i statusa
}
@ExceptionHandler(UserNotFoundException.class)
public final ResponseEntity<Object> handleUserNotFoundExceptions(UserNotFoundException ex, WebRequest request) {
//definisanje strukture odgovora za izuzetak
ExceptionResponse exceptionResponse= new ExceptionResponse(new Date(), ex.getMessage(), request.getDescription(false));
return new ResponseEntity(exceptionResponse, HttpStatus.NOT_FOUND); //vracanje strukture odgovora i statusa

}
@Override

protected ResponseEntity<Object> handleMethodArgumentNotValid(MethodArgumentNotValidException ex, HttpHeaders headers,
HttpStatus status, WebRequest request) {

ExceptionResponse exceptionResponse= new ExceptionResponse(new Date(), ex.getMessage(), ex.getBindingResult().toString());
return new ResponseEntity(exceptionResponse, HttpStatus.BAD_REQUEST); //vracanje strukture odgovora i statusa

}
}

EsekTpoTexHUYKH daKyaTeT y beorpaay



Uhvacene greske

* POST zahtev poslat iz Postman alata:

POST http:/flocalhost:8080/users Params Send - Save
Body ) Status: 400 Bad Request | Time: 853 ms
Pretry JSON =
1-k
2 "timestamp”: “2819-18-83TA5:36:52.322+0008",
3 "message":l"validatiun failed for argument [@]lin public org.springframework.http.ResponseEntity<java.lang.0bject? com.javatpoint.server.main

.user.UserResource.createlUser(com. javatpoint. server.main.user.User): [Field error in ocbject ‘user' on field 'name': rejected value [Jack];
codes [Size.user.name,Size.name,size.java.lang.5tring,5ize]; arguments [org.springframework.context.support.DefaultMessageSourceResolvable:
codes [user.name,name]; arguments []; default message [name],2147483847,5]; default message [size must be between 5 and 214748364711 ",

4 "details": "org.springframework.validation.BeanPropertyBindingResult: 1 errorsinField error in object "user' on field '"name': rejected value
[Jack]; codes [5ize.user.name,Size.name,S5ize.java.lang.5tring,5ize]; arguments [org.springframework.context.support
.DefaultMessageSourceResolvable: codes [user.name,nams]; grguments []; default message [name],2147483647,5]; default message [size must be
between 5 and 21474536471

> 1

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



@ Internacionalizacija (I118N)

* Proces dizajniranja veb aplikacije ili servisa tako da se pruzi automatska podrska za
razliCite zemlje, razliCite jezike, bez unosenja velikih promena unutar aplikacije.

* Lokalizacija se izvrsava dodavanjem komponenti specificnih za prevedeni tekst,
podataka koji opisuju lokalno ponasanje, itd.

* Priza punu integraciju u klase i pakete koji pruzaju funkcionalnost koja zavisi od
jezika ili kulture.

* Java pruza osnovu za internacionalizaciju i za desktop i za serverske aplikacije.

* Dve stvari treba da se konfigurisu da bi servis bio internacionalan:

— LocaleResolver
— ResourceBundleMessageSource

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Internacionalizacija - podrska

* Predstavljanje teksta: Java je zasnovana na Unicode skupu znakova, i nekoliko
biblioteka implementira Unicode standard.

 Identifikacija i lokalizacija: Locale u Javi su identifikatori, koji se koriste za
zahtevanje ponasSanja specificnog za lokalizaciju.
Klasa ResourceBundle podrzava lokalizaciju i obezbeduje pristup lokalnim
specificnim objektima, ukljuCujuci i nizove.

* Rukovanje datumom i vremenom: Java nudi razliCite kalendare.
Podrzava konverziju u/iz kalendarski nezavisnih objekata datuma.
Podrzava sve vremenske zone na svetu.

* Obrada teksta: ukljuCuje analizu znakova, mapiranje velikih i malih slova, poredenje
stringova, razvijanje teksta u reci, formatiranje brojeva, datuma i vrednosti
vremena u nizove ili njihovo rasclanjivanje iz stringova.

* Kodiranje znakova: podrska za pretvarane izmedu Unicode i drugih kodiranja.

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Internacionalizacija

* Podrazumevana vrednost za Locale je Locale.US.

* Ovavrednost se dobija uvek ukoliko nije definisana lokacija.

* Svojstva se Cuvaju u objektu ResourceBundle.

* ResourceBundleMessageSource je koncept u Spring MVC za dohvatanje svojstava.
* Nakon toga koristi se MessageSource i zaglavlje Accept-Language.

* Konfigurisanje bean-a na podrazumevanu vrednost:
@Bean
public LocaleResolver localeResolver() {
SessionLocaleResolver localeResolver = new SessionLocaleResolver();
localeResolver.setDefaultLocale(Locale.US);

return localeResolver;

}

EsekTpoTexHUYKH daKyaTeT y beorpaay



Fajlovi sa svojstvima

* messages.properties:
good.morning.message=Good Morning

good.evening.message=Good Evening

* messages_fr.properties
good.morning.message=Bonjour

good.evening.message=Bonne soirée

° messages_de.properties
good.morning.message=Guten Morgen

good.evening.message=Good Abend

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



Konfigurisanje aplikacije

package rs.etf.server.main;

import java.util.Locale;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.annotation.Bean;

import org.springframework.context.support.ResourceBundleMessageSource;

import org.springframework.web.servlet.LocaleResolver;

import org.springframework.web.servlet.i18n.SessionLocaleResolver;

@SpringBootApplication

public class RestfulWebServicesApplication{

public static void main(String[] args){
SpringApplication.run(RestfulWebServicesApplication.class, args);

EsekTpoTexHUYKH daKyaTeT y beorpaay

//konfiguracija podrazumevanog Locale
@Bean
public LocaleResolver localeResolver(){

SessionLocaleResolver localeResolver =
new SessionLocaleResolver();

localeResolver.setDefaultLocale(Locale.US);
return localeResolver;

//konfiguracija ResourceBundle
@Bean
public ResourceBundleMessageSource messageSource(){

ResourceBundleMessageSource
messageSource = new ResourceBundleMessageSource();

messageSource.setBasename("messages");
return messageSource;




Upotreba u kontroleru

package rs.etf.server.main.helloworld;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestHeader;
import org.springframework.web.bind.annotation.RestController;
import java.util.Locale;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.MessageSource;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.il8n.LocaleContextHolder;
@Configuration
@RestController
public class HelloWorldController {

@Autowired

private MessageSource messageSource;

@GetMapping(path="/hello-world")

public String helloWorld(){

return "Hello World";

}

EsekTpoTexHUYKH daKyaTeT y beorpaay

@GetMapping(path="/hello-world-bean")
public HelloWorldBean helloWorldBean(){
return new HelloWorldBean("Hello World");
}
@GetMapping(path="/hello-world /path-variable/{name}")

public HelloWorldBean helloWorldPathVariable(@PathVariable
String name) {

return
new HelloWorldBean(String.format("Hello World, %s",name));

}
//internacionalizacija
@GetMapping(path="/hello-world-internationalized")

public String helloWorldInternationalized(@RequestHeader(
name="Accept-Language", required=false) Locale locale) {

return messageSource.getMessage("good.morning.message”,
null, LocaleContextHolder.getLocale());




Konfigurisanje aplikacije (2)

package rs.etf.server.main;

import java.util.Locale;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.annotation.Bean;

import org.springframework.context.support.ResourceBundleMessageSource;

import org.springframework.web.servlet.LocaleResolver;

import org.springframework.web.servlet.i18n.SessionLocaleResolver;

import org.springframework.web.servlet.i18n.AcceptHeaderLocaleResolver;

@SpringBootApplication

public class RestfulWebServicesApplication{

public static void main(String[] args){
SpringApplication.run(RestfulWebServicesApplication.class, args);

Prednost AcceptHeaderLocaleResolver je
Sto ne moramo da konfiguriSemo zaglavlje
zahteva kao parametar, u svakom metodu
kontrolera.

EsekTpoTexHUYKH daKyaTeT y beorpaay

@Bean
public LocaleResolver localeResolver(){

AcceptHeaderLocaleResolver localeResolver =
new AcceptHeaderLocaleResolver();

localeResolver.setDefaultLocale(Locale.US);
return localeResolver;

}
}

//konfiguracija ResourceBundle

// moZe i definisanjem u application.properties:
//spring.messages.basename=messages

@Bean

public ResourceBundleMessageSource messageSource(){

ResourceBundleMessageSource
messageSource = new ResourceBundleMessageSource();

messageSource.setBasename("messages");
return messageSource;

}
}



JWT autentifikacija i autorizacija

Postoji viSe nacina za
autentifikaciju nasih
RESTful veb servisa.

U osnovnoj autentifikaciji
Saljemo korisnicko ime i
lozinku, kao deo naSeg
zahteva.

Kod malo naprednijih oblika
autentifikacije, ne Salje se
stvarna lozinka serveru,

vec se Salje sazetak.

Najnapredniji oblici
autentifikacije danas su
OAuth i OAuth?2.

Clients

Japi/vl/auth/signup

Request signup user info

v

Response with user signup token

Japifv1/auth/signin

Request to sign in

—

EsekTpoTexHUYKH daKyaTeT y beorpaay

F

Response with sign in token

Japi/vl/resource

Request to access resource

v

Response with resource content

[ Demo Service J

/ Q Spring boot 3+\

@ Spring Security 6+

(( JDK 17

V Maven 3.9.+

3:& JsonWebToken

@L JPA

\@ H2 Nosq|




@ Dijagram toka registracije korisnika

* 1) Proces pocinje kada korisnik
podnese zahtev servisu.

» Korisnicki objekat se generise iz
.y @ -
podataka zahteva, pri Cemu se | o B A e
lozinka kodira pomoc¢u eerepesten

® H2 NoSql
PasswordEncoder. @ . [ Ugar nsanes J

i

» 2) Korisnicki objekat se Cuva u bazi &y
podataka koristecCi UserRepository, L * A
koji koristi Spring Data JPA. e /
* 3) JwtService se poziva
da generise JWT za objekat User.

* 4)JWT se enkapsulira u JSON
odgovor i potom se vraca korisniku.

EsekTpoTexHUYKH daKyaTeT y beorpaay

HTTP 200: JWT token




User not found @

* 1) Proces pocinje kada korisnik ® A‘h
éalle Zahtev SerVISu. Bad Credentials user

Autentifikacioni objekat se tada g3
generiSe, da dostavi korisnicko ime @ ©
i lozinku. s

@ Dijagram toka prijave u sistem
.

}

* 2) AuthenticationManager je zaduzen [ww ® |
za autentifikaciju autent. objekta, i hvatanje svih neophodnih zahteva.
Ako su korisnicki ime ili lozinka nekorektni, izuzetak Ce biti uhvacen, a odgovor HTTP
statusa 403 Ce biti vracen korisniku.

* 3) Nakon uspesne autentifikacije, pokuSava se dohvatiti korisnik iz baze podataka.
Ukoliko korisnik ne postoji, odgovor HTTP status 403 se vraca korisniku.

* 4) Nakon Sto imamo korisnicke informacije, generiSemo JWT iz servisa.
* 5)JWT se enkapsulira u JSON odgovor, koji se vraca korisniku.

EsekTpoTexHUYKH daKyaTeT y beorpaay




Koriscenje Spring Security

User not found ® ]

@IL : g‘a

User not found ® extract Ueeibenleservioe H2 NoSql
IWT
Http{ 403

DE

: ) - B &
Y Http Request ® ‘ e @ i Spring Securi
> ﬁ 3} pring Security

Missing Jwt @

(i

@ IwtAuthenticationFilter ContextSecutiryHolder Authorization Process
= JwtService
4 4 (Custom filter) Y
l Update autheptication abject \
HTTP 403: Invalid JWT @ Validate @
JWT
Controller
HTTP 200: Successful Json @

EnekTpoTexHHUYKH ¢aKyaTeT y beorpaay



@ Spring Boot Starter Test

e Zavisnost spring-boot-starter-test je glavna za proces testiranja.
» Sadrzi glavne elemente neophodne za nase testove.

* Postoji nekoliko razlicitih tipova testova, koje mozZemo pisati za testiranje aplikacije
i automatizaciju zdravstvenog stanja aplikacije.

» Kada kreiramo Spring Boot aplikaciju, ona ¢e u pom.xml fajlu imati zavisnosti za
testirane, a testove piSemo u folderu: src/test/java

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Primer jedinicnog testa

package com.javatpoint.springboottestexample;
import org.junit.jupiter.api.Test;
import org.springframework.boot.test.context.SpringBootTest;
@SpringBootTest
class SpringBootTestExampleApplicationTests {

@Test

void contextLoads() {

//sadrzaj testa

} Aspect] Refactoring »
Ju 1 JUnit Test Alt+Shift+ X, T I3 FRun As >
4
Run Configurations.., 45 Debug As
| Profile As 3

EnexTpoTexHU4YKHU dakyaTeT y beorpaay



@ Integracioni test (za testiranje konekcije)

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringBootTomcatConnectionPoollntegrationTest {

@Autowired
private DataSource dataSource;

@Test
public void givenConnectionPoolinstance_whenCheckedPoolClassName_thenCorrect() {
assertThat(dataSource.getClass().getName()).isEqualTo("org.apache.tomcat.jdbc.pool.DataSource");

EsekTpoTexHUYKH daKyaTeT y beorpaay



@ Rezime

* Aplikativna klasa je ulazna tacka u Spring Boot aplikaciju i ona je oznacena sa
@SpringBootApplication.

» Klasa koja je oznacCena sa @RestController, oznacava da je to kontroler za veb servis.

* Osnovna URL putanja za sve krajnje tacke vezane za korisnike definiSe se
koriSCenjem @RequestMapping(“/users”).

* Metoda koja mapira detalje o nekom korisniku, treba da sadrzi obrazac /{userld}
a ispred metode treba da se nade @GetMapping(“/{userld}”). Promenljiva putanje

userld path se ekstrahuje koris¢enjem @PathVariable i prosleduje kao parametar
metode.

« Starteri su poCetna podeSavanja projekta, a aktuatori su potprojekti koji nam
pomazu da nadgledamo i upravljamo Spring Boot aplikacijom.

» Zaproces testiranja Spring Boot aplikacije mozemo Koristiti jediniCne testove.

EsekTpoTexHUYKH daKyaTeT y beorpaay



Hvala na paznji ©

PITAN]JA?

4/29/2024 EnekTpoTexHHUYKH ¢paKyaTeT y beorpaay



	Slide 1:                  Univerzitet u Beogradu – Elektrotehnički fakultet  Spring Boot 
	Slide 2: Sadržaj
	Slide 3: Spring Framework arhitektura
	Slide 4: Modularnost Spring aplikacije
	Slide 5: Arhitektura aplikacije Spring
	Slide 6: MVC kontrola toka
	Slide 7: Spring i Spring Boot
	Slide 8: Zašto nam je neophodan Spring Boot?
	Slide 9: Spring Boot pokretanje
	Slide 10: Hello World
	Slide 11: Osnovne komponente Spring Boot
	Slide 12: Automatska konfiguracija
	Slide 13: Spring Boot Core i CLI
	Slide 14: Aktuatori, starteri i alati
	Slide 15: Kako koristiti Spring Boot?
	Slide 16: Kreiranje Spring Boot projekta kroz Initializr
	Slide 17: Koraci manuelne inicijalizacije
	Slide 18: Šta mi želimo?  Arhitektura punog steka – Angular + Spring + MySQL
	Slide 19: Spring Rest kontroleri
	Slide 20: Primer kontrolera
	Slide 21: Application class
	Slide 22: Anotacija @SpringBootApplication
	Slide 23: Anotacija @RequestMapping
	Slide 24: Mapiranja
	Slide 25: @RequestBody i @ResponseBody
	Slide 26: @PathVariable i @RequestParam
	Slide 27: Korišćenje @PathVariable
	Slide 28: Korišćenje @RequestParam
	Slide 29: Više parametara u @RequestParam
	Slide 30: Još neka važna pravila konverzije
	Slide 31: Još neka važna pravila konverzije (2)
	Slide 32: @RequestHeader
	Slide 33: @RequestHeader
	Slide 34: @RequestHeader
	Slide 35: CORS (Cross-Origin Resource Sharing) konfiguracija
	Slide 36: @Required
	Slide 37: @Autowired
	Slide 38: @Configuration
	Slide 39: @ComponentScan
	Slide 40: @Bean
	Slide 41: @Component
	Slide 42: @Controller
	Slide 43: Razlike @Controller i @RestController
	Slide 44: Servisi @Service
	Slide 45: Repozitorijumi @Repository
	Slide 46: Repozitorijumi u strukturi projekta
	Slide 47: @Query
	Slide 48: Spring Boot arhitektura sa bazom
	Slide 49: Maven - alat za upravljanje zavisnostima
	Slide 50: spring-boot-starter-parent (pom.xml)
	Slide 51: spring-boot-starter-parent (pom.xml)
	Slide 52: Spring Boot bez Parent POM
	Slide 53: Spring Boot Application Properties
	Slide 54: Primer applicaton.properties fajla
	Slide 55: Kategorije Spring Boot osobina (property)
	Slide 56: Osobine aplikacije (1)
	Slide 57: Osobine aplikacije (2)
	Slide 58: Osobine aplikacije (3)
	Slide 59: Osobine aplikacije (4)
	Slide 60: Starteri
	Slide 61: Spring Boot starteri
	Slide 62: Spring Boot starteri (2)
	Slide 63: Spring Boot starteri (3)
	Slide 64: Spring Boot starteri (4)
	Slide 65: Produkcioni i tehnički starteri
	Slide 66: Spring Boot Starter za veb razvoj
	Slide 67: Automatska konfiguracija
	Slide 68: Zamena servera u podešavanjima
	Slide 69: JPA – Java Persistence API
	Slide 70: Arhitektura Java Persistence API
	Slide 71: Relacije između JPA klasa i interfejsa 
	Slide 72: Spring Data JPA
	Slide 73: Spring Data JPA - osobine
	Slide 74: JPQL – Java Persistence Query Language
	Slide 75: Spring Data JPA repozitorijumi
	Slide 76: ORM
	Slide 77: Spring Boot aktuatori (pokretači)
	Slide 78: Karakteristike aktuatora
	Slide 79: Omogućavanje Spring Boot aktuatora
	Slide 80: Spring Boot aktuator - krajnje tačke
	Slide 81: Spring Boot aktuator - krajnje tačke (2)
	Slide 82: Spring Boot aktuator podešavanja
	Slide 83: Spring Boot JDBC
	Slide 84: Udruživanje (pooling) JDBC konekcija
	Slide 85: Šta je uloga udruživanja (pooling)?
	Slide 86: Radni okviri za udruživanje: karakteristike
	Slide 87: Radni okvir HikariCP
	Slide 88: Primer sa Hikari ili Tomcat mehanizmom
	Slide 89: Dodatna svojstva u Tomcat mehanizmu
	Slide 90: Primer bez mehanizma upravljanja konekcijama
	Slide 91: Prednosti Spring Boot u odnosu na Spring
	Slide 92: Razlike JDBC i Hibernate
	Slide 93: Spring Boot CRUD operacije
	Slide 94: Spring Boot CRUD operacije
	Slide 95: Spring Boot CRUD repozitorijum
	Slide 96: Razlike između repozitorijuma CRUD i JPA
	Slide 97: Primer sa CRUD operacijama
	Slide 98: Primer sa CRUD operacijama (2)
	Slide 99: Primer sa CRUD operacijama (3)
	Slide 100: Validacija za RESTful servise
	Slide 101: Validacija za RESTful servise (2)
	Slide 102: Validacija za RESTful servise (3)
	Slide 103: Validacija za RESTful servise (4)
	Slide 104: Uhvaćene greške
	Slide 105: Internacionalizacija (I18N)
	Slide 106: Internacionalizacija - podrška
	Slide 107: Internacionalizacija
	Slide 108: Fajlovi sa svojstvima
	Slide 109: Konfigurisanje aplikacije
	Slide 110: Upotreba u kontroleru
	Slide 111: Konfigurisanje aplikacije (2)
	Slide 112: JWT autentifikacija i autorizacija
	Slide 113: Dijagram toka registracije korisnika
	Slide 114: Dijagram toka prijave u sistem
	Slide 115: Korišćenje Spring Security
	Slide 116: Spring Boot Starter Test
	Slide 117: Primer jediničnog testa
	Slide 118: Integracioni test (za testiranje konekcije)
	Slide 119: Rezime
	Slide 120: PITANJA?

