
Predavač: Prof. dr Dražen Drašković

Beograd, april 2024. godine

Univerzitet u Beogradu – Elektrotehnički fakultet

Spring Boot

Sadržaj

• Kako pojednostaviti razvoj Spring
aplikacija?

• Osnovne karakteristike Spring Boot

• Podešavanje radnog prostora

• Arhitektura slojeva u Spring Boot
aplikaciji

• Povezivanje Spring Boot sa bazama
podataka i korišćenje JPA

• Testiranje Spring Boot aplikacija

4/29/2024 Електротехнички факултет у Београду 2

Spring Framework arhitektura

• Aspektno-orijentisano programiranje

• MVC - HTTP/servlet-baziran radni okvir

• Upravljanje transakcijama

• Jezgro kontejner - pruža ubrizgavanje
zavisnosti (DI/IoC), sadrži BeanFactory,...

• Kontekst aplikacije - modul koji pruža različite usluge
na nivou servisa, raspoređivanja, e-poštu, itd.

• Svaka EE aplikacija komunicira sa bazom: Spring DAO
obezbeđuje apstrakciju preko JDBC

• Spring ORM - alati za objektno-relaciono mapiranje

Електротехнички факултет у Београду 3

Modularnost Spring aplikacije

Електротехнички факултет у Београду 4

Arhitektura aplikacije Spring

Електротехнички факултет у Београду 5

Baza
podataka

Baza
podataka

Repozitorijum Servis Kontroler

EntitetiEntiteti ModeliModeli

Serverski deo aplikacije

Klijentski deo aplikacije

Pogledi (views)

MVC kontrola toka

Електротехнички факултет у Београду 6

Veb klijent
(veb pregledač)

Pogled (view)

Kontroler

ZAHTEV (request)

ODGOVOR (response):

HTML / JSON / XML

Model

Ažuriraj model Obavesti

Korisnička akcija

Ažuriraj

pogled

Spring i Spring Boot

• Spring je počeo kao alternativa Java EE (Enterprise Edition / J2EE) - umesto Java
Beans, koristiti injektiranu zavisnost i aspektno-orijentisano programiranje

• Lak za pisanje komponenti, težak za konfigurisanje

• Početak sa XML fajlovima, zatim anotacije (od Spring 2.5), pa Java bazirano
konfigurisanje (od Springa 3.0)

• Upravljanje transakcijama i Spring MVC zahtevalo eksplicitnu konfiguraciju

• Upravljanje zavisnostima nezahvalan zadatak - koje biblioteke i koje verzije?

• Spring Boot - nudi novu paradigmu za razvoj Spring aplikacija, sa minimalnim
naporom (minimalno konfigurisanje)

• Spring Boot nam donosi: konvenciju za konfigurisanje; standardizaciju za
mikroservise; integrisani server za razvoj; podršku za Cloud; prilagođavanje i
podrška za 3rd party biblioteke.

Електротехнички факултет у Београду 7

Zašto nam je neophodan Spring Boot?

• Glavna prednost Spring Boot:
konfiguriše resurse na osnovu onoga što nađe u Classpath.

• Npr. ukoliko vaš Maven POM sadrži JPA zavisnosti i MySQL drajver, tada će
Spring Boot podesiti aplikaciju za rad sa MySQL bazom. Ukoliko dodate i veb
zavisnosti, onda će podrazumevano biti konfigurisana Spring MVC arhitektura.

• Ukoliko se ništa ne definiše u POM fajlu, Spring Boot će konfigurisati
podrazumevano Hibernate kao JPA provajder sa HyperSQL DataBase.

• Glavni ciljevi uvođenja Spring Boot:
– Da se obezbedi brži razvoj Spring aplikacija

– Da se lako iskoriste podrazumevane konfiguracije parametara aplikacije

– Da obezbedi veći broj nefunkcionalnih zahteva koji su veoma uobičajeni za projekte velikih
razmera (npr. ugrađeni serveri, bezbednost aplikacije, metrika, eksterna konfiguracija, itd.)

Електротехнички факултет у Београду 8

Spring Boot pokretanje

• Realizuju se stand-alone aplikacije, zasnovane na Spring tehnologiji,
koje se lako pokreću

• Pokretanje slično kao kod Javinih aplikacija: java –jar ili preko tradicionalnog WAR

• Postoji i CLI preko koga možemo pokretati „Spring skripte“

Електротехнички факултет у Београду 9

Hello World

• Primer aplikacije za Groovy-baziran
kontroler/klasu

• Nema konfiguracije

• Nema web.xml

• Pokretanje iz Spring Boot CLI:
$ spring run HelloController.groovy

• Ovo je samo primer da može i sa Groovy,
ali mi ćemo raditi sa programskim jezikom
Java.

Електротехнички факултет у Београду 10

@RestController

class HelloController {

 @RequestMapping("/")

 def hello() {

 return "Hello World"

 }

}

Osnovne komponente Spring Boot

• Automatska konfiguracija - automatsko
obezbeđivanje konfiguracije

• Jezgro / Početne zavisnosti - kažete koju
funkcionalnost želite i osigurano je da će se
biblioteke dodati pri izgradnji

• Interfejs komandne linije (CLI) - pisanje
kompletne aplikacije samo sa kodom aplikacije
(bez tradicionalne izgradnje projekta)

• Aktuatori, starteri, alati

Електротехнички факултет у Београду 11

Automatska konfiguracija

• Modul koji radi auto konfiguraciju širokog spektra Spring projekata.

• Detektuje postojanje određenog radnog okvira (eng. framework), kao što su:
Spring Batch, Spring Data JPA, Hibernate, JDBC.

• Kada detektuje, pokušaće da autokonfiguriše taj radni okvir sa nekim razumnim
podrazumevanim vrednostima, koje se mogu lako zameniti (override)
konfiguracijom u datoteci application.properties/yml.

• * YAML (Yet Another Markup Language) –
human-readable data serialization language

Kao i JSON, ovo je noviji jezik, alternativa XML.

Електротехнички факултет у Београду 12

Spring Boot Core i CLI

• Sprint Core – baza za druge module, ali pruža neke funkcionalnosti koje mogu da
se koriste samostalno, npr. koristeći argumente komandne linije i YAML fajlova,
kao svojstva Spring okruženja i automatski vezujući svojstva okruženja za svojstva
Spring bean-ova (sa validacijom).

• Spring CLI – interfejs komandne linije za pokretanje ili zaustavljanje kreiranja
jedne Spring Boot aplikacije.

Електротехнички факултет у Београду 13

Aktuatori, starteri i alati

• Aktuatori - kada se projekat doda, omogući će određene osobine okruženja
(bezbednost, metrika, stranica sa podrazumevanim greškama) u vašoj aplikaciji.

• Koristi se da otkrije određene radne okvire/osobine u vašoj aplikaciji.

• Primer: Korišćenjem aktuatora možete pronaći sve REST servise koji su definisani
u veb aplikaciji.

• Starteri - različiti kratki startni projekti koji se mogu uključiti kao zavisnost u vaš
Maven/Gradle build fajl.

• Alati za izgradnju Maven i Gradle, kao i prilagođeni Spring Boot Loader (korišćen u
izvršnom JAR/WAR) su uključeni u projekat.

Електротехнички факултет у Београду 14

Kako koristiti Spring Boot?

• Korišćenjem start.spring.io (Initializr) ili korišćenjem STS (Spring
Tool Suite) podrške dostupne u alatima IntelliJ IDEA ili Eclipse ili
VS Code, i onda odabrati sve Spring Boot Startere.

• Odabere se da li se koristi Maven ili Gradle kod izgradnje.

• Ukoliko se koristi start.spring.io, tada se preuzme ZIP i
konfiguriše radni prostor. Sa druge strane, korišćenjem alata
(IDE) će se automatski kreirati zahtevani fajl u radnom prostoru.

• Za kreiranje JAR fajla, može se koristiti mvn clean package ili
korisiti IntelliJ IDEA /Eclipse. JAR podrazumeva integrisanje sa
Tomcat serverom.

Електротехнички факултет у Београду 15

Kreiranje Spring Boot projekta kroz Initializr

• https://start.spring.io

Електротехнички факултет у Београду 16

Koraci manuelne inicijalizacije

• Posetiti: https://start.spring.io.

• Servis povlači sve neophodne zavisnosti koje želite i postvlja inicijalni setap.

• Bira se jezik koji želite (Java/Kotlin/Groovy) i
tip izgradnje aplikacije (Gradle ili Maven).

• U zavisnostima odabrati: Spring Web.

• Pritisnuti Generate

• Preuzeti rezultujući ZIP fajl, koji je generisana veb aplikacija.

Електротехнички факултет у Београду 17

Šta mi želimo?
Arhitektura punog steka – Angular + Spring + MySQL

Електротехнички факултет у Београду 18

Spring Rest kontroleri

• Prihvataju HTTP zahteve sa klijentske strane (frontend) i upućuju ih odgovarajućim
servisima.

• Uključuje procesiranje zahteva za podacima, autentifikaciju i autorizaciju korisnika
i druge akcije.

• Anotacija: @RestController

Електротехнички факултет у Београду 19

Primer kontrolera

@RestController – za prihvatanje veb
zahteva koristiće Spring MVC.

@GetMapping mapira na index() metod.

Kada se pozove iz veb pregledača metoda
vraća tekst.

To je zato što @RestController kombinuje
@Controller i @ResponseBody, dve
anotacije koje kao rezultat vraćaju
podatke, a ne prikaz.

Електротехнички факултет у Београду 20

Application class
src/main/java/com/example/springboot/Application.java

Електротехнички факултет у Београду 21

Anotacija @SpringBootApplication

• Ona dodaje sledeće:

• @Configuration: Označava klasu kao izvor definicija bean-a za kontekst aplikacije.

• @EnableAutoConfiguration: Govori Spring Boot-u da treba da doda bean-ove
zasnovane na podešavanjima classpath-a, drugim bean-ovima ili različitim
podešavanjima osobina. Na primer: ako je spring-webmvc na classpath-u, ova
anotacija označava da je aplikacija tipa veb aplikcije i aktivira ključna ponašanja,
kao što je podešavanje DispatcherServlet (frontend kontroler).

• @ComponentScan: Traži Spring-u da pronađe druge komponente, konfiguracije i
servise u paketu.

• Metoda main() koristi Spring Boot’s SpringApplication.run() metod da pokrene
aplikaciju.

• Postoji i metoda CommandLineRunner označena kao @Bean, koja se takođe startuje,
i preuzima sve bean-ove koje je kreirala aplikacija ili su deo Spring Boot.

Електротехнички факултет у Београду 22

Anotacija @RequestMapping

• @RequestMapping – koristi se da mapira HTTP zahtev u metodu MVC/REST
kontrolera. Kod Spring MVC aplikacija, DispatcherServlet je odgovoran za rutiranje
dolazećeg HTTP zahteva u metodu kontrolera.

• Ova anotacija se može primeniti na nivo klase ili nivo metode u kontroleru.

• Na nivou klase, ova anotacija mapira specifičnu putanju zahteva ili obrazac
(pattern) na kontroler. Moguće je dodati anotacije na nivou metoda da bi mapiranje
označili specifičnijim.

• Primer:
// Annotation

@RequestMapping("/hello")

// Method

public String helloWorld() {

 return "Hello World!";

}

Електротехнички факултет у Београду 23

Ova anotacija veliki broj opcionih
elemenata:
consumes, header, method, name,
params, path, produces, value.

Mapiranja

• @GetMapping: Mapira zahteve HTTP GET u specifičnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tačku veb servisa koji služi za dohvatanje podataka, sa klijentske strane.
Koristi se umesto: @RequestMapping(method = RequestMethod.GET)

• @PostMapping: Mapira zahteve HTTP POST u specifičnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tačku veb servisa koji kreira.
Koristi se umesto: @RequestMapping(method = RequestMethod.POST)

• @PutMapping: Mapira zahteve HTTP PUT u specifičnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tačku veb servisa koji kreira ili ažurira.
Koristi se umesto: @RequestMapping(method = RequestMethod.PUT)

• @DeleteMapping: Mapira zahteve HTTP DELETE u specifičnu metodu za hvatanje zahteva.
Koristi se da kreira krajnju tačku veb servisa koji briše resurse.
Koristi se umesto: @RequestMapping(method = RequestMethod.DELETE)

• @PatchMapping: Mapira zahteve HTTP PATCH u specifičnu metodu za hvatanje zahteva.
Koristi se umesto: @RequestMapping(method = RequestMethod.PATCH)

Електротехнички факултет у Београду 24

@RequestBody i @ResponseBody

• Anotacija @RequestBody koristi se za vezivane zahteva (HttpRequest) sa
objektom prenosa u parametru metode (ili domenskim objektom), omogućavajući
automatsku deserijalizaciju dolaznog tela HttpRequest na Java objekat.

• Podrazumevano tip koji je označen anotacijom @RequestBody mora da odgovara
JSON objektu, koji šalje naš kontroler na klijentskoj strani.

• Anotacija @ResponseBody govori kontroleru da je vraćeni objekat automatski
serijalizovan u JSON ili XML format, i vraćen nazad u HttpResponse objekat.

Електротехнички факултет у Београду 25

@PathVariable i @RequestParam

• Anotacija @PathVariable se koristi za preuzimanje podataka sa URL putanje.

• Definisanjem džoker znakova (placeholder) u mapirajućoj URL adresi zahteva,
mogu se povezati ti znakovi sa parametrima metoda anotiranih u @PathVariable.

• Ovo omogućava pristup dinamičkim vrednostima u URL i njihovo korišćenje.

• Primer: /users/123, čime prosleđujemo jedinstveni broj indeksa metodi, koja će
preuzeti nakon toga neke podatke o tom korisniku (studentu)

• Anotacija @RequestParam dozvoljava da izvučemo podatke iz parametara upita u
URL zahtevu. Parametri upita su ključ-vrednost parovi, koji se ugrađuju u URL
putanju nakon oznake ?

• Ovo je korisno kada treba proslediti dodatne informacije ili filtere vašim krajnjim
tačkama API

• Primer: /users/search?name=Milovan

Електротехнички факултет у Београду 26

Korišćenje @PathVariable

@RestController

@RequestMapping("/users")

public class UserController {

@GetMapping("/{userId}")

public ResponseEntity<User> getUserDetails(@PathVariable Long userId) {

// Implementation to fetch user details based on the provided userId

// ...

return ResponseEntity.ok(user);

}

}

Електротехнички факултет у Београду 27

Korišćenje @RequestParam

@RestController

@RequestMapping("/users")

public class UserController {

 @GetMapping("/search")

 public ResponseEntity<List<User>> searchUsers(@RequestParam("name")
String name) {

 // Implementation to search users based on the provided name

 // ...

 return ResponseEntity.ok(users);

 }

}
Електротехнички факултет у Београду 28

Više parametara u @RequestParam

@RestController

@RequestMapping("/users")

public class UserController {

 @GetMapping("/search")

 public ResponseEntity<List<User>> searchUsers(

 @RequestParam(value = "name", required = false, defaultValue = "John") String name,

 @RequestParam(value = "age", required = false, defaultValue = "18") int age) {

 // Implementation to search users based on the provided name and age

 // ...

 return ResponseEntity.ok(users);

 }

}

Електротехнички факултет у Београду 29

Možemo imati podrazumevanu (default)
vrednost, ukoliko Query parametar nije
definisan u URL putanji.

Još neka važna pravila konverzije

• Konverzija tipa podatka: Spring Boot omogućava automatsku konverziju tipa
podatka za @PathVariable i @RequestParam parametre. Ulazni podaci zahteva
mogu da se konvertuju u potrebne tipove podataka (String, int, boolean,...).
Ukoliko konverzija ne uspe, biće uhvaćen izuzetak, omogućavajući nam da lako
rukujemo greškom.

• Više parametara: Možete koristiti više paramerata i kod @PathVariable i
@RequestParam u jednoj metodi koja treba da izdvoji više vrednosti iz URL putane
i parametara upita. Ovo omogućava da koristimo više podataka iz jednog zahteva.

• Validacija podataka: Možete koristiti validaciju nad ekstrahovanim podacima iz
zahteva korišćenjem anotacija za validaciju iz paketa javax.validation ili
korišćenjem prilagođene logike validacije. Ovo pomaže da podaci ispunjavaju
određene kriterijume, pre nego što budu dalje procesirani.

Електротехнички факултет у Београду 30

Još neka važna pravila konverzije (2)

• Obrasci (patterns) promenljivih putanja: Anotacija @PathVariable podržava
promenljive obrasce unutar URL putanje. Ovo može biti korisnio za rukovanje
dinamičkim i složenim URL strukturama.

• Kolekcije parametara upita: Ako očekujete više vrednosti iz upita, možete koristiti
tipove List ili Array za odgovarajući parametar metode označen sa @RequestParam.
Spring Boot će automatski uvezati sve vrednosti za parametar kolekcije.

• Opcione promenljive putanje: Promenljive putanje možete učiniti opcionim, time
što ćete obezbediti podrazumevanu vrednost ili koristiti tip Optional<T> kao
parametar metode. Ovo omogućava da rukujete slučajevima u kojima određene
promenljive putanje mogu ili ne moraju biti prisutne u zahtevu.

• Rukujte uvek potencijalnim izuzecima i scenarijima sa greškama kada ekstrahujete
podatke iz zahteva. Spring Boot pruža nekoliko različitih mehanizama.

Електротехнички факултет у Београду 31

@RequestHeader

• Koristi se da bi se dohvatili detalji iz zaglavlja HTTP zahteva.

• Ova anotacija se koristi kao parametar metode.

• Opcioni elementi ove anotacije su: name, required, value, defaultValue

• Za svaki detalj u zaglavlju, treba da se koristi odvojena anotacija (dozvoljeno je
korišćenje anotacije više puta u metodi).

• Primer sa string tipom u zaglavlju i definisanim imenom:
@GetMapping("/greeting")

public ResponseEntity<String> greeting(@RequestHeader(HttpHeaders.ACCEPT_LANGUAGE)
String language) {

 // code that uses the language variable

 return new ResponseEntity<String>(greeting, HttpStatus.OK);

}

Електротехнички факултет у Београду 32

@RequestHeader

• Primer sa celim brojem:
@GetMapping("/double")

public ResponseEntity<String> doubleNumber(@RequestHeader("my-number") int myNumber) {

return new ResponseEntity<String>(String.format("%d * 2 = %d",

myNumber, (myNumber * 2)), HttpStatus.OK);

}

• Ako nismo sigurni da je zaglavlje prisutno ili nam je potrebno više njih nego što
želimo u potpisu naše metode, tada možemo koristiti istu anotaciju, ali bez
određenog imena.

• Koju promenljivu onda koristiti?

• Ima više načina: Map, MultiValueMap, HttpHeaders objekat

Електротехнички факултет у Београду 33

@RequestHeader

Primeri:
@GetMapping("/listHeaders")

public ResponseEntity<String> listAllHeaders(

@RequestHeader Map<String, String> headers) {

headers.forEach((key, value) -> {

LOG.info(String.format("Header '%s' = %s", key, value));

});

return new ResponseEntity<String>(

String.format("Listed %d headers", headers.size()),
HttpStatus.OK);

}

@GetMapping("/multiValue")

public ResponseEntity<String> multiValue(

 @RequestHeader MultiValueMap<String, String> headers) {

 headers.forEach((key, value) -> {

 LOG.info(String.format(

 "Header '%s' = %s", key,
value.stream().collect(Collectors.joining("|"))));

 });

 return new ResponseEntity<String>(

 String.format("Listed %d headers", headers.size()),
HttpStatus.OK);

}

Електротехнички факултет у Београду 34

CORS (Cross-Origin Resource Sharing)
konfiguracija

• RESTful veb servis će uključiti CORS kontrolu pristupa zaglavlja u odgovoru,
ukoliko dodate anotaciju @CrossOrigin:

• Anotacija @CrossOrigin dozvoljava deljenje resursa sa više izvora samo za ovu
označenu metodu. Podrazumevano, dozvoljeni su svi izvori, sva zaglavlja i HTTP
metode naznačene u @RequestMapping anotaciji.

Електротехнички факултет у Београду 35

@Required

• Primenjuje se na setter metodu u bean-u.

• Ukazuje da anotirani bean mora biti popunjen u vreme konfigurisanja potrebnim
svojstvom, u suprotnom će se baciti izuzetak BeanInitilizationException.

• Primer:
public class Machine

{

private Integer cost;

@Required

public void setCost(Integer cost) {

this.cost = cost;

}

public Integer getCost() {

return cost;

}

}

Електротехнички факултет у Београду 36

@Autowired

• Anotacija koja služi za injektiranja drugih bean-ova sa kojima sarađujemo u naš
bean.

• Nakon što omogućimo injektiranje, možemo koristiti automatsko uvezivanje na
svojstvima (properties), setter metodama i konstruktorima.

• Primer:
@Component

public class Customer {

private Person person;

@Autowired

public Customer(Person person) {

this.person=person;

}

}

Електротехнички факултет у Београду 37

@Configuration

• Anotacija klasnog nivoa. Klasa koja ima ovu oznaku koristi se od strane Spring
kontejnera kao izvor definisanja bean-a.

• Primer:

@Configuration

public class Vehicle {

 @Bean

Vehicle engine() {

 return new Vehicle();

}

}

Електротехнички факултет у Београду 38

@ComponentScan

• Anotacija kada u određenom bean-u želimo da skeniramo paket.

• Koristi se zajedno sa anotacijom @Configuration.

• @ComponentScan osigurava da se sve klase označene sa @Component, kao i
njihovi derivati (uključujući @Repository) pronađu i registruju kao Spring bean-ovi.

• @ComponentScan je automatski uključen u @SpringBootApplication.

• Primer:

@ComponentScan(basePackages = "rs.ac.bg.etf")

@Configuration

public class ScanComponent

{

// ...

}
Електротехнички факултет у Београду 39

@Bean

• Anotacija na nivou metoda. Predstavlja alternativu za <bean> oznaku u XML fajlu.

• Ovaj element govori metodi da će njom upravljati Spring Container.

• Primer:

@Bean

public BeanExample beanExampleMethod()

{

return new BeanExample ();

}

Електротехнички факултет у Београду 40

@Component

• Za razliku od prethodnih anotacija, koji su pripadali Core Spring anotacijama,
u nastavu navodimo stereotipove koji grade Spring aplikaciju.

• @Component je anotacija na nivou klase. Koristi se za označavanje klase kao beana.

• Javina klasa označena sa @Component se pronalazi u classpath-u.

• Radni okvir preuzima i konfiguriše ga u kontekstu aplikacije kao Spring Bean.

• Primer:

@Component

public class Student

{

.......

}

Електротехнички факултет у Београду 41

@Controller

• Anotacija na nivou klase. Označava klasu kao hvatač za veb zahtev (request) i često
se koristi da prikaže veb stranice.

• Podrazumevano vraća string, koji označava rutu na koju se redirektujemo.

• Kombinuje se sa anotacijom @RequestMapping.

• Primer:
@Controller

@RequestMapping("books")

public class BooksController {

@RequestMapping(value = "/{name}", method = RequestMethod.GET)

public Employee getBooksByName() {

 return booksTemplate;

}

}
Електротехнички факултет у Београду 42

Razlike @Controller i @RestController

• U Spring MVC, obe anotacije se koriste da definišu veb kontrolere u MVC uzorku.
Kontroler je odgovoran za prihvatanje HTTP zahteva i vraćanje HTTP odgovora
klijentu.

• Kod Spring Boot, @Controller se koristi da kreira veb kontroler koji vraća poglede
(views) u vidu HTTP odgovora (response),
dok se @RestController koristi da kreira veb servise (REST API) koji vraćaju JSON
ili XML podatke.

• @RestController je kombinacija @Controller i @ReponseBody sa ciljem da
napravimo REST API u Spring Boot (uveden je od Spring 3.4 verzije).

Електротехнички факултет у Београду 43

Servisi @Service

• Sadrže poslovnu logiku aplikacije i koriste anotaciju @Service.

• Koristi se na klasnom nivou i definiše klasu sa poslovnom logikom.

• Ovde se obavlja obrada podataka, validacija, nekad i komunikacija sa bazom
podataka.

package rs.ac.bg.etf;

@Service

public class TestService {

public void serviceMethod() {

//poslovna logika

}

}
Електротехнички факултет у Београду 44

Repozitorijumi @Repository

• Repozitorijumi se koriste za interakciju sa bazom podataka.

• Anotacija @Repository prikazuje da je klasa tipa repozitorijuma.

• Ovaj mehanizam služi za enkapsuliranje skladišta, preuzimanje i pretraživanje
objekata, kroz kolekcije objekata, odnosno repozitorijumi omogućavaju dohvatanje,
ažuriranje i brisanje podataka u bazi.

• Predstavlja specijalizaciju anotacije @Component, koja omogućava da se klase
automatski detektuju kroz skeniranje classpath.
package rs.ac.bg.etf;

@Repository

public class TestRepository {
public void delete() {

//persistence code

}

}

Електротехнички факултет у Београду 45

Repozitorijumi u strukturi projekta

Електротехнички факултет у Београду 46

@Query

• Koriste anotaciju za upite @Query:

 @Query(value = "SELECT b FROM Diplomski b WHERE b.idDiplomski=?1")

 Optional<Diplomski> findDiplomskiById(Integer id);

 @Transactional

 @Modifying

 @Query(value = "DELETE FROM Diplomski b WHERE b.idDiplomski=?1")

 void deleteDiplomskiById(Integer id);

Електротехнички факултет у Београду 47

Spring Boot arhitektura sa bazom

Електротехнички факултет у Београду 48

Maven - alat za upravljanje zavisnostima

• Prednosti alata za upravljanje zavisnostima:
– Pružaju centralizovane informacije o zavisnostima, uz definisanje verzije Spring Boot na jednom

mestu. Veoma je korisno ukoliko menjamo verzije radnog okvira.

– Izbegava nepodudaranje različitih verzija Spring Boot biblioteka.

– Potrebno je samo da napišemo ime biblioteke, sa specificiranjem verzije (korisno za projekte sa
više modula).

• Maven projekat nasleđuje osobine iz početnog projekta spring-boot-starter-parent:
– Podrazumevanu Java kompajler verziju

– UTF-8 enkodovanje

– Odeljak sa zavisnostima iz spring-boot-dependency-pom

– Zavisnosti nasleđene iz POM fajla

– Resource filtering + Plugin configuration

Електротехнички факултет у Београду 49

spring-boot-starter-parent (pom.xml)

<parent>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-parent</artifactId>

<version>2.7.3</version>

<relativePath/> <!-- lookup parent from repository -->

</parent>

• Verzija Jave (ako želimo da menjamo):

<properties>

<java.version>1.8</java.version>

</properties>

Електротехнички факултет у Београду 50

spring-boot-starter-parent (pom.xml)

• Dodavanje Maven dodatka i pakovanje u JAR fajl:

<build>

<plugins>

<plugin>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>

</plugins>

</build>

Електротехнички факултет у Београду 51

Spring Boot bez Parent POM

<dependencyManagement>

<dependencies>

<dependency><!-- Import dependency management from Spring Boot -->

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-dependencies</artifactId>

<version>2.2.2.RELEASE</version>

<type>pom</type>

<scope>import</scope>

</dependency>

</dependencies>

</dependencyManagement>

Електротехнички факултет у Београду 52

Spring Boot Application Properties

Електротехнички факултет у Београду 53

• Radni okvir Spring Boot dolazi sa mehanizmom izgradnje za
konfigurisanje aplikacije korišćenjem fajla application.properties
(lokacija: src/main/resources)

• Spring Boot pruža nekoliko osobina koje se mogu konfigurisati
i neke od njih imaju podrazumevane (default) vrednosti.

• Spring Boot dozvoljava definisanje nekog posebnog parametra
koji želite, ako je potrebno.

• Korišćenjem ovog fajla:
– konfiguriše se Spring Boot radni okvir

– našoj aplikaciji definišemo specifične osobine

Primer applicaton.properties fajla

Електротехнички факултет у Београду 54

spring.datasource.url=jdbc:mysql://localhost:3306/rti_katedra

spring.datasource.username=root

spring.datasource.password=sifra123

spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

spring.jpa.hibernate.ddl-auto=update

spring.jpa.show-sql=true

spring.jpa.properties.hibernate.format_sql=true

server.error.include-stacktrace=always

spring.main.allow-circular-references=true

spring.servlet.multipart.max-file-size=2MB

spring.servlet.multipart.max-request-size=2MB

Kategorije Spring Boot osobina (property)

1. Core Properties

2. Cache Properties

3. Mail Properties

4. JSON Properties

5. Data Properties

6. Transaction Properties

7. Data Migration Properties

8. Integration Properties

9. Web Properties

10. Templating Properties

11. Server Properties

12. Security Properties

13. RSocket Properties

14. Actuator Properties

15. DevTools Properties

16. Testing Properties

Електротехнички факултет у Београду 55

Osobine aplikacije (1)

Property Default Values Description

Debug false It enables debug logs.

spring.application.name It is used to set the application name.

spring.application.admin.enabled false It is used to enable admin features of the application.

spring.config.name application It is used to set config file name.

spring.config.location It is used to config the file name.

server.port 8080 Configures the HTTP server port

server.servlet.context-path It configures the context path of the application.

logging.file.path It configures the location of the log file.

spring.banner.charset UTF-8 Banner file encoding.

spring.banner.location classpath:banner.txt It is used to set banner file location.

logging.file It is used to set log file name. For example, data.log.

Osobine aplikacije (2)

Property Default Values Description

spring.application.index It is used to set application index.

spring.application.name It is used to set the application name.

spring.application.admin.enabled false It is used to enable admin features for the application.

spring.config.location It is used to config the file locations.

spring.config.name application It is used to set config the file name.

spring.mail.default-encoding UTF-8 It is used to set default MimeMessage encoding.

spring.mail.host It is used to set SMTP server host. For example,
smtp.example.com.

spring.mail.password It is used to set login password of the SMTP server.

spring.mail.port It is used to set SMTP server port.

spring.mail.test-connection false It is used to test that the mail server is available on startup.

spring.mail.username It is used to set login user of the SMTP server.

Osobine aplikacije (3)
Property Default Values Description

spring.main.sources It is used to set sources for the application.

server.address It is used to set network address to which the server should
bind to.

server.connection-timeout It is used to set time in milliseconds that connectors will wait for
another HTTP request before closing the connection.

server.context-path It is used to set context path of the application.

server.port 8080 It is used to set HTTP port.

server.server-header It is used for the Server response header (no header is sent if
empty)

server.servlet-path / It is used to set path of the main dispatcher servlet

server.ssl.enabled It is used to enable SSL support.

spring.http.multipart.enabled True It is used to enable support of multi-part uploads.

spring.servlet.multipart.max-file-size 1MB It is used to set max file size.

spring.mvc.async.request-timeout It is used to set time in milliseconds.

Osobine aplikacije (4)
Property Default Values Description

spring.mvc.date-format It is used to set date format. For example, dd/MM/yyyy.

spring.mvc.locale It is used to set locale for the application.

spring.social.facebook.app-id It is used to set application's Facebook App ID.

spring.social.linkedin.app-id It is used to set application's LinkedIn App ID.

spring.social.twitter.app-id It is used to set application's Twitter App ID.

security.basic.authorize-mode role It is used to set security authorize mode to apply.

security.basic.enabled true It is used to enable basic authentication.

Spring.test.database.replace any Type of existing DataSource to replace.

Spring.test.mockmvc.print default MVC Print option

spring.freemaker.content-type text/html Content Type value

server.server-header Value to use for the server response header.

spring.security.filter.dispatcher-type async, error, request Security filter chain dispatcher types.

spring.security.oauth2.client.registration.* OAuth client registrations.

Starteri

• Spring Boot pruža veći broj startera (početnih podešavanja), koji omogućavaju lakši
i brži razvoj. Spring Boot Starteri su deskriptori zavisnosti.

• U ovom radnom okviru, svi starteri imaju slično imenovanje:
spring-boot-starter-* (gde * označava određeni tip aplikacije)

• Na primer, ako želimo da koristimo Spring i JPA za pristup bazama podataka,
mi ćemo uključiti zavisnost spring-boot-starter-data-jpa u naš pom.xml fajl.

• Takođe, mogu biti uključeni starteri (pokretači) sa neke treće strane.

• Starter treće strane počinje imenom projekta. Na primer ako je projekat treće
strane imenovan sa etfbgd, onda će zavinost biti: etfbgd-spring-boot-starter

Електротехнички факултет у Београду 60

Spring Boot starteri

Електротехнички факултет у Београду 61

Naziv Opis

spring-boot-starter-thymeleaf It is used to build MVC web applications using Thymeleaf views.

spring-boot-starter-data-couchbase It is used for the Couchbase document-oriented database and Spring Data Couchbase.

spring-boot-starter-artemis It is used for JMS messaging using Apache Artemis.

spring-boot-starter-web-services It is used for Spring Web Services.

spring-boot-starter-mail It is used to support Java Mail and Spring Framework's email sending.

spring-boot-starter-data-redis It is used for Redis key-value data store with Spring Data Redis and the Jedis client.

spring-boot-starter-web It is used for building the web application, including RESTful applications using Spring
MVC. It uses Tomcat as the default embedded container.

spring-boot-starter-data-gemfire It is used to GemFire distributed data store and Spring Data GemFire.

spring-boot-starter-activemq It is used in JMS messaging using Apache ActiveMQ.

spring-boot-starter-data-elasticsearch It is used in Elasticsearch search and analytics engine and Spring Data Elasticsearch.

spring-boot-starter-integration It is used for Spring Integration.

spring-boot-starter-test It is used to test Spring Boot applications with libraries, including JUnit, Hamcrest, and
Mockito.

Spring Boot starteri (2)

Електротехнички факултет у Београду 62

Naziv Opis

spring-boot-starter-jdbc It is used for JDBC with the Tomcat JDBC connection pool.

spring-boot-starter-mobile It is used for building web applications using Spring Mobile.

spring-boot-starter-validation It is used for Java Bean Validation with Hibernate Validator.

spring-boot-starter-hateoas It is used to build a hypermedia-based RESTful web application with Spring MVC and
Spring HATEOAS.

spring-boot-starter-jersey It is used to build RESTful web applications using JAX-RS and Jersey. An alternative to
spring-boot-starter-web.

spring-boot-starter-data-neo4j It is used for the Neo4j graph database and Spring Data Neo4j.

spring-boot-starter-data-ldap It is used for Spring Data LDAP.

spring-boot-starter-websocket It is used for building the WebSocket applications. It uses Spring Framework's
WebSocket support.

spring-boot-starter-aop It is used for aspect-oriented programming with Spring AOP and AspectJ.

spring-boot-starter-amqp It is used for Spring AMQP and Rabbit MQ.

spring-boot-starter-data-cassandra It is used for Cassandra distributed database and Spring Data Cassandra.

Spring Boot starteri (3)

Електротехнички факултет у Београду 63

Naziv Opis

spring-boot-starter-social-facebook It is used for Spring Social Facebook.

spring-boot-starter-jta-atomikos It is used for JTA transactions using Atomikos.

spring-boot-starter-security It is used for Spring Security.

spring-boot-starter-mustache It is used for building MVC web applications using Mustache views.

spring-boot-starter-data-jpa It is used for Spring Data JPA with Hibernate.

spring-boot-starter It is used for core starter, including auto-configuration support, logging, and YAML.

spring-boot-starter-groovy-templates It is used for building MVC web applications using Groovy Template views.

spring-boot-starter-freemarker It is used for building MVC web applications using FreeMarker views.

spring-boot-starter-batch It is used for Spring Batch.

spring-boot-starter-social-linkedin It is used for Spring Social LinkedIn.

spring-boot-starter-cache It is used for Spring Framework's caching support.

spring-boot-starter-data-solr It is used for the Apache Solr search platform with Spring Data Solr.

spring-boot-starter-data-mongodb It is used for MongoDB document-oriented database and Spring Data MongoDB.

Spring Boot starteri (4)

Електротехнички факултет у Београду 64

Naziv Opis

spring-boot-starter-jooq It is used for jOOQ to access SQL databases. An alternative to spring-boot-starter-data-
jpa or spring-boot-starter-jdbc.

spring-boot-starter-jta-narayana It is used for Spring Boot Narayana JTA Starter.

spring-boot-starter-cloud-connectors It is used for Spring Cloud Connectors that simplifies connecting to services in cloud
platforms like Cloud Foundry and Heroku.

spring-boot-starter-jta-bitronix It is used for JTA transactions using Bitronix.

spring-boot-starter-social-twitter It is used for Spring Social Twitter.

spring-boot-starter-data-rest It is used for exposing Spring Data repositories over REST using Spring Data REST.

Produkcioni i tehnički starteri

Електротехнички факултет у Београду 65

Naziv Opis

spring-boot-starter-undertow It is used for Undertow as the embedded servlet container. An alternative to spring-
boot-starter-tomcat.

spring-boot-starter-jetty It is used for Jetty as the embedded servlet container. An alternative to spring-boot-
starter-tomcat.

spring-boot-starter-logging It is used for logging using Logback. Default logging starter.

spring-boot-starter-tomcat It is used for Tomcat as the embedded servlet container. Default servlet container
starter used by spring-boot-starter-web.

spring-boot-starter-log4j2 It is used for Log4j2 for logging. An alternative to spring-boot-starter-logging.

Naziv Opis

spring-boot-starter-actuator It is used for Spring Boot's Actuator that provides production-ready features to help
you monitor and manage your application.

spring-boot-starter-remote-shell It is used for the CRaSH remote shell to monitor and manage your application over
SSH. Deprecated since 1.5.

Spring Boot Starter za veb razvoj

• Spring veb koristi Spring MVC, REST i Tomcat, kao podrazumevani ugrađeni veb
server. Ubacivanjem spring-boot-starter-web zavisnosti, tranzitivno se povlače sve
zavisnosti neophodne za razvoj veb aplikacija:
– org.springframework.boot:spring-boot-starter

– org.springframework.boot:spring-boot-starter-tomcat

– org.springframework.boot:spring-boot-starter-validation

– com.fasterxml.jackson.core:jackson-databind

– org.springframework:spring-web

– org.springframework:spring-webmvc

• Primer:
<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>

<version>2.2.2.RELEASE</version>

</dependency>
Електротехнички факултет у Београду 66

Automatska konfiguracija

• Spring-boot-starter-web konfiguriše sledeće stvari:
• Dispatcher Servlet

• Stranicu sa greškom (error page)

• Web JARs za upravljanje statičkim zavisnostima

• Ugrađeni servlet kontejner

• Svaka Spring Boot aplikacija ima ugrađen server za podizanje aplikacije.

• Podrazumevani ugrađeni server je Tomcat. Postoje podrška za još 2 servera:
Jetty Server i Undertow Server.

• Kada se koristi drugi server, Tomcat mora da se isključi, da ne bi došlo do konflikta
između dva veb servera.

Електротехнички факултет у Београду 67

Zamena servera u podešavanjima

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>

<exclusions>

<exclusion>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-tomcat</artifactId>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-jetty</artifactId>

</dependency>

Електротехнички факултет у Београду 68

JPA – Java Persistence API

• Za komunikaciju sa relacionom MySQL bazom možemo koristiti Java Persistence API
(JPA), koji omogućava mapirane Java objekata na entitete u bazi, čime se olakšava
pristup i manipulacija podacima.

• Sve operacije sa bazom podataka, kao što su čitanje, ažurirane, brisanje i dodavanje
obavljaće se preko JPA.

• Koristi se: platformski nezavistan, objektno orijentisani upitni jezik JPQL (Java
Persistent Query Language).

• Prednosti JPA:
– JPA izbegava pisanje DDL zasnovan na SQL dijalektu, umesto toga mapira u XML ili koristi Java

anotacije. Takođe, JPA izbegava pisanje DML zasnovanom na specifičnom dijalektu SQL.

– JPA omogućava da čuvamo i učitavamo Java objekte i grafove bez ikakvog DML jezika.

– Kada izvršavamo JPQL upite, on omogućava da izrazimo upite u obliku Java entiteta, a ne kroz
prirodne SQL tabele i kolone.

Електротехнички факултет у Београду 69

Arhitektura Java Persistence API
• Persistence - klasa koja sadrži statičke

metode za dobijanje EntityManagerFactory
instance.

• EntityManagerFactory – klasa fabrika
EntityManager, koja kreira i upravlja sa
više instanci EntityManager.

• EntityManager – interfejs koji kontroliše
operacije perzistencije nad objektima. Radi
za Query instancu.

• Entity – to su perzistencioni objekti koji
čuvaju zapis u bazi podataka.

• Persistence Unit – definiše skup svih
entitetskih klasa. U aplikaciji,
EntityManager instance upravljaju tim.

• EntityTransaction – ima 1-1 vezu za
EntityManager.

• Query – interfejs koji implementira svaki
JPA potrošač.

Електротехнички факултет у Београду 70

Relacije između JPA klasa i interfejsa

• Relacija između EntityManager i EntityTransaction je
1-1. Postoji po jedna instanca EntityTransaction za
svaku EntityManager operaciju.

• Relacija između EntityManagerFactory i EntityManager
je 1-prema-više. Postoji jedna klasa fabrika za intance
EntityManager.

• Veza između EntityMaanger i Query je 1-prema-više.
Može se izvršiti više upita nad jednom instancom
EntityManager klase.

• Veza između EntityManager i Entity je 1-prema-više.
Instanca EntityManager može upravljati sa više
entiteta.

Електротехнички факултет у Београду 71

Spring Data JPA

• Spring Data je izvorni Spring projekat visokog nivoa.

• Svrha: objediniti i omogućiti jednostavan pristup različitim vrstama skladišta, i
relacionim bazama i NoSQL skladištima podataka, kroz DAL.

• Cilj: Implementacijom nove aplikacije, treba da se fokusiramo na poslovnu logiku,
ne na tehničku složenost i šablonski programski kod.

• Spring Data JPA dodaje sloj na vrh JPA i on koristi sve osobine definisane kroz JPA
specifikaciju: entitet, mapiranje asocijacija, mogućnosti izgadnje upita kroz JPA.

• Spring Data JPA dodaje svoje osobine kao što su implementacija šablona
repozitorijuma (bez koda) i kreiranje upita baze podataka iz naziva metode.

• Spring Data JPA obrađuje većinu kompleksnog pristupa bazama kroz JDBC i ORM
(objektno relaciono mapiranje).

Електротехнички факултет у Београду 72

Spring Data JPA - osobine

• Tri glavne prednosti su:
– Repozitorijum bez koda - Najpopularniji projektni obrazac za perzistenciju. Omogućava nam

da implementiramo naš kod na višem nivou apstrakcije.

– Redukovanje šablonskog koda - Obezbeđuje podrazumevanu implementaciju za svaki metod
preko interfejsa repozitorijuma. To znači da nemamo potrebu implementirati operacije čitanja i
pisanja.

– Generisani upiti – Generisanje upita za bazu na osnovu imena metoda. Ako upit nije previše
kompleksan, treba da definišemo metod na interfejsu našeg repozitorijuma sa imenom koji
počinje sa findBy. Nakon definisanja metoda, Spring parsira naziv metode i kreira upit:

public interface EmployeeRepository extends CrudRepository<Employee, Long>

{

Employee findByName(String name);

}

Електротехнички факултет у Београду 73

JPQL – Java Persistence Query Language

• Spring generiše JPQL upite, zasnovane na imenu metode.

• Upit se izvodi iz potpisa metode. On postavlja vrednost parametra, izvršava upit i
vraća rezultat.

• Postoje još neke karakteristike ovog jezika kao što su:
– Može da integriše poseban kod za repozitorijum.

– Podržava transparentnu reviziju i apstrakciju objektno-relacionog mapiranja.

– Implementira osnovnu domensku klasu koja obezbeđuje osnovna svojstva.

– Podržava nekoliko modula, kao što su: Spring Data JPA, Spring Data MongoDB, Spring Data REST,
Spring Data Cassandra, itd.

Електротехнички факултет у Београду 74

Spring Data JPA repozitorijumi

• CrudRepository – nudi standarde operacije Create, Read, Update, Delete.
Sadrži metode kao što su: findOne(), findAll(), save(), delete(), itd.

• PagingAndSortingRepository – proširuje CrudRepozitory i dodaje findAll() metode,
uz omogućavanje sortiranja i preuzimanja podataka koje ćemo izdeliti (paginacija).

• JpaRepository - JPA specifičan repozitorijum, koji proširuje oba repozitorijuma
(CrudRepository i PagingAndSortingRepository) i dodaje specifične metode,
kao što je flush() da bi se pokrenula operacija flush za perzistiranje konteksta.

• Hibernate je implementacija JPA, i predstavlja jedan od najpopularnijih ORM radnih
okvira. JPA je samo API koji definiše specifikaciju.

• Uz pomoć Hibernate vezujemo objekte sa tabelama. On osigurava da se podaci
čitaju iz baze/čuvaju u bazi, na osnovu mapiranja. On pruža takođe dodatne
funkcije na vrhu JPA.

• Postoje i druge implementacije JPA, kao što su EclipseLink, DataNucleus, itd.
Електротехнички факултет у Београду 75

ORM

• ORM – mapiranje Javinih objekata u
tabele baze podataka.

• ORM mapiranje radi kao most između
relacionih baza podataka (tabele i
zapisi) i Java aplikacija (klase i objekti).

• ORM sloj je sloj za prilagođavanje koji
prilagođava jezik objektnih grafova u
strukturalni jezik SQL.

Електротехнички факултет у Београду 76

Spring Boot aktuatori (pokretači)

• Spring Boot aktuatori su potprojekti koji uključuju određeni broj dodatnih funkcija
koji nam pomažu da nadgledamo i upravljamo Spring Boot aplikacijom.

• Aktuatori sadrže krajnje tačke aktuatora (mesta gde resursi žive).

• Možemo koristiti HTTP i JMX krajnje tačke za upravljanje i nadgledane Spring Boot
aplikacije.

• Ako želimo da dobijemo funkcionalnosti spremne za produkcionu aplikaciju,
tada koristimo Spring Boot aktuatore.

• Tri glavne karakteristike aktuatora su:
– krajnje tačke (eng. endpoints),

– metrike (eng. metrics),

– revizije (eng. audit).

Електротехнички факултет у Београду 77

Karakteristike aktuatora
• Krajnje tačke aktuatora omogućavaju nadgledanje i interakciju sa aplikacijom.

• Spring Boot pruža brojne ugrađene krajnje tačke, ali možemo dodati i sopstvene
krajnje tačke. Mi utičemo na uključivanje ili isključivanje krajnje tačke individualno.

• Većina aplikacija bira HTTP, gde je ID krajnje tačke zajedno sa prefiksom /actuator,
mapiran u URL adresi. Na primer: krajnja tačka /health pruža osnovne informacije
o stanju aplikacije, pa mu se pristupa preko: /actuator/health

• Spring Boot Aktuator obezbeđuje dimenzionalne metrike, uz pomoć Mikrometra.

• Mikrometar, integrisan u Spring Boot, je biblioteka za instrumentaciju, koja pokreće
isporuku aplikativnih metrika iz Springa.

• Mikrometar obezbeđuje interfejse, neutralne za proizvođača, kao što su: timers,
gauges, counters, long task timers, itd.

• Spring Boot pruža fleksibilan okvir revizije (događaji se objavljuju u
AuditEventRepository). Događaji autentifikacije se automatski objavljuju.

Електротехнички факултет у Београду 78

Omogućavanje Spring Boot aktuatora
• Injektiranjem zavisnosti spring-boot-starter-acutator, u pom.xml fajlu:

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-actuator</artifactId>

<version>2.2.2.RELEASE</version>

</dependency>

Електротехнички факултет у Београду 79

Spring Boot aktuator - krajnje tačke

Електротехнички факултет у Београду 80

ID Korišćenje Default

actuator It provides a hypermedia-based discovery page for the other endpoints. It requires Spring
HATEOAS to be on the classpath.

True

auditevents It exposes audit events information for the current application. True

autoconfig It is used to display an auto-configuration report showing all auto-configuration candidates and
the reason why they 'were' or 'were not' applied.

True

beans It is used to display a complete list of all the Spring beans in your application. True

configprops It is used to display a collated list of all @ConfigurationProperties. True

dump It is used to perform a thread dump. True

env It is used to expose properties from Spring's ConfigurableEnvironment. True

flyway It is used to show any Flyway database migrations that have been applied. True

health It is used to show application health information. False

info It is used to display arbitrary application info. False

Spring Boot aktuator - krajnje tačke (2)

Електротехнички факултет у Београду 81

ID Korišćenje Default

loggers It is used to show and modify the configuration of loggers in the application. True

liquibase It is used to show any Liquibase database migrations that have been applied. True

metrics It is used to show metrics information for the current application. True

mappings It is used to display a collated list of all @RequestMapping paths. True

shutdown It is used to allow the application to be gracefully shutdown. True

trace It is used to display trace information. True

Spring Boot aktuator podešavanja
• Spring Boot omogućava sigurnost za sve krajnje tačke aktuatora.

Koristi autenftifikaciju koja daje korisnički ID kao korisnika i nasumično generisanu
lozinku.

• Mi možemo pristup krajnjim tačkama ograničiti, tako što ćemo prilagoditi sigurnost
osnovne autentifikacije krajnjim tačkama.

• Primer:
management.security.enabled=true

management.security.roles=ADMIN

security.basic.enabled=true

security.user.name=admin

security.user.passowrd=admin

Електротехнички факултет у Београду 82

Spring Boot JDBC

• Spring Boot obezbeđuje starter i biblioteke za povezivanje aplikacije sa JDBC.

• U Spring Boot JDBC, bean-ovi koji se povezuju sa bazom, kao što su DataSource,
JdbcTemplate, NamedParameterJdbcTemplate, se autokonfigurišu i kreiraju tokom
pokretanja. Možemo automatski povezati (sa @Autowired) ove klase, ako želimo da
ih koristimo.

• Primer:

@Autowired

JdbcTemplate jdbcTemplate;

@Autowired

private NamedParameterJdbcTemplate jdbcTemplate;

Електротехнички факултет у Београду 83

Udruživanje (pooling) JDBC konekcija
• Udruživanje JDBC konekcija je mehanizam koji upravlja višestrukim zahtevima za

povezivanje sa bazom podataka.

• Olakšava ponovnu upotrebu veze, memoriše keš svih veza sa bazama (skup veza).

• Modul za udruživanje veza održava kao sloj na vrhu bilo kog standardnog JDBC
drajverskog proizvoda.

• U fajlu application.properties konfiguriše se DataSource i mehanizam udruživanja
Zašto je kreiranje konekcije skupo?
– Otvaranje konekcije ka bazi

– Autentifikacija korisnika

– Kreiranje TCP priključka za
čitanje/upisivanje podataka

– Slanje/primanje podataka preko priključka

– Zatvarane konekcije

– Zatvaranje TCP priključka

Електротехнички факултет у Београду 84

Šta je uloga udruživanja (pooling)?
• Povećava brzinu pristupa podacima i smanjuje broj veza sa bazom podataka za

aplikaciju.

• Poboljšava performanse aplikacije.

• Glavni zadaci su:
– Upravljanje dostupnom konekcijom

– Dodeljivanje nove konekcije

– Zatvaranje konekcije

Електротехнички факултет у Београду 85

Radni okviri za udruživanje: karakteristike
• Postoji veći broj radnih okvira, koje biramo na osnovu karakteristika.

• Pouzdanost:
– Lako se konfiguriše.

– Obratite pažnju na otvorene defekte u biblioteci.

– Voditi računa o problemima sa zastojima (deadlocks).

• Performanse:
– Obratite pažnju na podešavanja i okruženje za testiranje.

– Rezultati testiranja u velikoj meri zavise od podešavanja konfiguracije.

• Podrška:
– Dobra dokumentacija.

– Velika aktivna zajednica i široka upotreba.

• Najpopularniji radni okviri: Tomcat JDBC i HikariCP.

Електротехнички факултет у Београду 86

Radni okvir HikariCP
• Najbrži mehanizam za upravljanje konekcijama.

• Prednosti radnog okvira:
– dizajniran da bude deadlock-free;

– može sam otkriti curenje konekcija;

– pruža dobre podrazumevane vrednosti za konfiguraciju;

– pronalazi dobru ravnotežu između nepreopterećenih korisnika sa mnogo konfiguracije i mnogo
funkcionalne konfiguracije;

– ultra laan (samo 130Kb);

– odlični rezultati testova upoređivanja
(benchmark);

– mali broj defekata (bagova).

• Nema formule za max skup
no_connections = ((2 * core_count) + no_of_disks)

Електротехнички факултет у Београду 87

Primer sa Hikari ili Tomcat mehanizmom
<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

 <exclusions>

 <exclusion>

 <groupId>com.zaxxer</groupId>

 <artifactId>HikariCP</artifactId>

 </exclusion>

 </exclusions>

</dependency>

<dependency>

 <groupId>org.apache.tomcat</groupId>

 <artifactId>tomcat-jdbc</artifactId>

 <version>10.1.7</version>

</dependency>

• Način da HikariCP zamenimo sa Tomcat mehanizmom.

• Ne pišemo klasu @Configuration i programski
definešemo @Bean sa izvorom podataka.

• Spring Boot može autokonfigurisati
H2 unutarmemorijsku bazu:
<dependency>

<groupId>com.h2database</groupId>

<artifactId>h2</artifactId>

<version>2.1.214</version>

<scope>runtime</scope>

</dependency>

• Alternativno, preskakanje algoritma za
pretraživanja skupa konekcija:

Електротехнички факултет у Београду 88

//u fajlu application.properties:
spring.datasource.type=org.apache.tomcat.jdbc.pool.DataSource
// other spring datasource properties

Dodatna svojstva u Tomcat mehanizmu

• Za optimizaciju performansi i ispunjavanje nekih specifičnih zahteva možemo dodati
u fajlu application.properties, još neka svojstva:

spring.datasource.tomcat.initial-size=15

spring.datasource.tomcat.max-wait=20000

spring.datasource.tomcat.max-active=50

spring.datasource.tomcat.max-idle=15

spring.datasource.tomcat.min-idle=8

spring.datasource.tomcat.default-auto-commit=true

Електротехнички факултет у Београду 89

Primer bez mehanizma upravljanja konekcijama
//DB.java

@Configuration

public class DB {

 @Bean

 public static DataSource source(){

 DriverManagerDataSource ds = new DriverManagerDataSource();

 ds.setDriverClassName("com.mysql.cj.jdbc.Driver");

 ds.setUrl("jdbc:mysql://localhost:3306/mojabaza");

 ds.setUsername("root");

 ds.setPassword("");

 return ds;

 }

}

• Realizujemo klasu sa @Configuration
anotacijom i metodu koja implementira
izvor podataka.

• Postavljamo drajver koji koristimo, URL
putanju do instance baze, parametre
autentifikacije.

• U sloju podataka, repozitorijumske klase
imaju metode koje izvršavaju upite nad
bazom i koriste ovu konekciju.

Електротехнички факултет у Београду 90

Prednosti Spring Boot u odnosu na Spring

Spring Boot Spring

Neophodna samo zavisnost
spring-boot-starter-jdbc

U Spring JDBC, više zavisnosti je neophodno da se
konfiguriše kao što su spring-jdbc i spring-context

Automatski konfiguriše Datasource bean,
ako se ne održava eksplicitno.
Ako ne želimo da koristimo bean, mi ćemo postaviti
svojstvo spring.datasource.initialize na
vrednost false.

In Spring JDBC, it is necessary to create a database
bean either using XML or javaconfig.

Nije potrebno da registrujemo Template bean-ove,
jer on automatski registruje bean-ove.

Moraju se zasebno registrovati Template bean-ovi
kao što su PlatformTransactionManager,
JDBCTemplate, NamedParameterJdbcTemplate

Sve skripte za inicijalizaciju baze podataka su
memorisane u .SQL fajlu, i automatski se izvršavaju.

Ukoliko bilo koja skripta za inicijalizaciju (kao što su
brisanje ili kreiranje tabele) je kreirana u SQL fajlu, ta
informacija je potrebna da se eksplicitno stavi u
konfiguraciju.

Електротехнички факултет у Београду 91

Razlike JDBC i Hibernate

JDBC Hibernate

JDBC je tehnologija. Hibarnate je radni okvir za objektno-relaciono
mapiranje (ORM).

Korisnik je odgovoran za otvaranje i zatvaranje
konekcija.

Sistem u realnom vremenu brine o otvaranju i
zatvaranju konekcija.

Nije podržano lenjo učitavanje (lazy loading). Podržano je lenjo učitavanje, koje daje bolje
performanse.

Ne podržava asocijacije (konekcije između dve
odvojene klase).

Podržane su asocijacije.

Електротехнички факултет у Београду 92

Spring Boot CRUD operacije
• CRUD – Create, Read/Retrieve, Update, Delete;

4 osnovne funkcije za perzistiranje skladišta podataka:
– CREATE operacija: Izvršava INSERT naredbu za kreiranje novog zapisa.

– READ operacija: Čita zapis tabele na osnovu ulaznog parametra.

– UPDATE operacija: Izvršava naredbu za ažuriranje tabele, na osnovu ulaznog parametra.

– DELETE operacija: Briše specifičan red u tabeli, na osnovu ulaznog parametra.

• CRUD je orijentisan na podatke i standardizovanu upotrebu HTTP akcija:
– POST: kreiranje novog resursa

– GET: čitane resursa

– PUT: ažuriranje postojećeg resursa

– DELETE: brisanje resursa

• Unutar baze podataka, svaka od ovih operacija se direktno mapira u niz komandi.

• Odnos sa RESTful API je malo složeniji.

Електротехнички факултет у Београду 93

Spring Boot CRUD operacije
• Postoji dosta opcija za izvršavanje CRUD operacija.

• Jedna od najefikasnijih: kreiranje skupa uskladištenih (stored) procedura u SQL.

• Svako slovo CRUD može se mapirati u SQL naredbu i HTTP metodu.

Електротехнички факултет у Београду 94

Operacija SQL upit HTTP radnja RESTful veb servis

Create INSERT PUT/POST POST

Read SELECT GET GET

Update UPDATE PUT/POST/PATCH PUT

Delete DELETE DELETE DELETE

Spring Boot CRUD repozitorijum
• Spring Boot obezbeđuje interfejs, nazvan CrudRepository, koji ima ugrađene

metode za CRUD operacije. On je izveden iz Repository interfejsa.

• Definisan u paketu: org.springframework.data.repository.

• Sintaksa: public interface CrudRepository<T,ID> extends Repository<T,ID>
T - tip domena kojim skladište upravlja;
ID – tip identifikatora entiteta kojim skladište upravlja.

• Primer:
public interface StudentRepository

extends CrudRepository<Student, Integer> {
}

• JPA repozitorijum pruža JPA metode kao što su flushing,
perzistiranje konteksta, brisanje zapisa u grupama.

• Primer:
public interface BookDAO extends JpaRepository { }

Електротехнички факултет у Београду 95

Razlike između repozitorijuma CRUD i JPA
• Interfejsi omogućavaju Springu da pronađe interfejs repozitorijuma i kreira proksi

objekte do njih.

• Interfejsi pružaju metode koje nam omogućavaju da izvršimo neke uobičajne
operacije.

Електротехнички факултет у Београду 96

CrudRepository JpaRepository

Ne pruža nijednu metodu za paginaciju i sortiranje. Proširuje PagingAndSortingRepository, koji pruža sve
metode za implementiranje paginacije.

Radi kao interfejs markera. Proširuje oba repozitorijuma:
CrudRepository i PagingAndSortingRepository.

Pruža samo osnovne CRUD funkcije, kao što su:
findById(), findAll(), itd.

Priža neke dodatne metode, zajedno sa metodama iz
PagingAndSortingRepository i CrudRepository.
Primer: flush(), deleteInBatch().

Koristimo kada nam nisu neophodne funkcije koje nam
nudi JpaRepository i PagingAndSortingRepository.

Koristimo kada želimo da implementiramo paginaciju i
funkcionalnost sortiranja u aplikaciji.

Primer sa CRUD operacijama
• Primer sa jednim modelom, i po jednim kontrolerom, servisom i repozitorijumom.
package rs.ac.bg.etf.models;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table

public class Books {

//Defining book id as primary key

@Id

@Column

private int bookid;

@Column

private String bookname;

@Column

private String author;

@Column

private int price;

public int getBookid(){ return bookid; }

public void setBookid(int bookid){ this.bookid = bookid; }

public String getBookname(){ return bookname; }

public void setBookname(String bookname){

this.bookname = bookname; }

public String getAuthor(){ return author; }

public void setAuthor(String author){ this.author = author; }

public int getPrice(){ return price; }

public void setPrice(int price){ this.price = price; }

}

Електротехнички факултет у Београду 97

Primer sa CRUD operacijama (2)
package rs.ac.bg.etf.controllers;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.web.bind.annotation.DeleteMapping;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.PutMapping;

import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RestController;

import rs.ac.bg.etf.models.Books;

import rs.ac.bg.etf.services.BooksService;

 @RestController

public class BooksController {

 @Autowired

 BooksService booksService;

 @GetMapping("/book")

 private List<Books> getAllBooks(){

 return booksService.getAllBooks(); }

@GetMapping("/book/{bookid}")

private Books getBooks(@PathVariable("bookid") int bookid){

 return booksService.getBooksById(bookid); }

@DeleteMapping("/book/{bookid}")

 private void deleteBook(@PathVariable("bookid") int bookid){

 booksService.delete(bookid);

 }

@PostMapping("/books")

 private int saveBook(@RequestBody Books books){

 booksService.saveOrUpdate(books);

 return books.getBookid();

 }

@PutMapping("/books")

 private Books update(@RequestBody Books books){

 booksService.saveOrUpdate(books);

 return books;

 }

}

Електротехнички факултет у Београду 98

Primer sa CRUD operacijama (3)
package rs.ac.bg.etf.services;

import java.util.ArrayList;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

import rs.ac.bg.etf.models.Books;

import rs.ac.bg.etf.repository.BooksRepository;

@Service

public class BooksService {

 @Autowired

 BooksRepository booksRepository;

 //dohvatanje svih zapisa koriscenjem ugradjene metode iz CrudRepository

 public List<Books> getAllBooks(){

 List<Books> books = new ArrayList<Books>();

 booksRepository.findAll().forEach(books1 -> books.add(books1));

 return books;

 }

 public Books getBooksById(int id){

 return booksRepository.findById(id).get(); }

//snimanje zapisa koriscenjem metode save() iz
//CrudRepository

public void saveOrUpdate(Books books){

 booksRepository.save(books);

 }

public void delete(int id){

 booksRepository.deleteById(id);

 }

public void update(Books books, int bookid){

 booksRepository.save(books);

 }

}

package rs.ac.bg.etf.repository;

import
 org.springframework.data.repository.CrudRepository;

import rs.ac.bg.etf.models.Books;

public interface BooksRepository
 extends CrudRepository<Books, Integer> {

}

Електротехнички факултет у Београду 99

Validacija za RESTful servise
• Korišćenje Java Validation API:
package rs.etf.server.main.user;

import java.net.URI;

import java.util.List;

import javax.validation.Valid;

...

@RestController

public class UserResource {

@Autowired

private UserDaoService service;

@GetMapping("/users")

public List<User> retriveAllUsers(){

return service.findAll(); }

@GetMapping("/users/{id}")

public User retriveUser(@PathVariable int id){

User user= service.findOne(id);

if(user==null) throw new UserNotFoundException("id: "+ id);

return user;
}

@DeleteMapping("/users/{id}")

public void deleteUser(@PathVariable int id){

User user= service.deleteById(id);

if(user==null) throw new UserNotFoundException("id: "+ id);

}

@PostMapping("/users")

public ResponseEntity<Object> createUser(@Valid
@RequestBody User user){

User sevedUser=service.save(user);

URI location=ServletUriComponentsBuilder.
fromCurrentRequest().path("/{id}").

buildAndExpand(sevedUser.getId()).toUri();

return ResponseEntity.created(location).build();

}

}

Електротехнички факултет у Београду 100

Validacija za RESTful servise (2)
package rs.etf.server.main.user;

import java.util.Date;

import javax.validation.constraints.Past;

import javax.validation.constraints.Size;

public class User {

private Integer id;

@Size(min=5,
 message= "Ime treba da ima najmanje 5 karaktera")

private String name;

@Past

private Date dob;

//default constructor

protected User(){ }

public User(Integer id, String name, Date dob){

super();

this.id = id;

this.name = name;

this.dob = dob;

}

public Integer getId(){ return id; }

public void setId(Integer id){ this.id = id; }

public String getName(){ return name; }

public void setName(String name){ this.name = name; }

public Date getDob(){ return dob; }

public void setDob(Date dob){ this.dob = dob; }

@Override

public String toString(){

//return "User [id="+id+", name="+name+", dob="+dob + "]";

return String.format("User [id=%s, name=%s, dob=%s]", id,
name, dob);

}

}

Електротехнички факултет у Београду 101

Validacija za RESTful servise (3)
package rs.etf.server.main;

import java.util.Date;

import org.springframework.http.HttpHeaders;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.MethodArgumentNotValidException;

import org.springframework.web.bind.annotation.ControllerAdvice;

import org.springframework.web.bind.annotation.ExceptionHandler;

import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.context.request.WebRequest;

import org.springframework.web.servlet.mvc.method.annotation.ResponseEntityExceptionHandler;

import com.javatpoint.server.main.exception.ExceptionResponse;

import com.javatpoint.server.main.user.UserNotFoundException;

@ControllerAdvice //Definisemo obradu izuzetka za sve izuzetke

@RestController

public class CustomizedResponseEntityExceptionHandler extends ResponseEntityExceptionHandler {

Електротехнички факултет у Београду 102

Validacija za RESTful servise (4)
@ExceptionHandler(Exception.class)

public final ResponseEntity<Object> handleAllExceptions(Exception ex, WebRequest request) {

 //definisanje structure odgovora za izuzetak

 ExceptionResponse exceptionResponse= new ExceptionResponse(new Date(), ex.getMessage(), request.getDescription(false));

 return new ResponseEntity(exceptionResponse, HttpStatus.INTERNAL_SERVER_ERROR); //vracanje strukture odgovora i statusa

}

@ExceptionHandler(UserNotFoundException.class)

public final ResponseEntity<Object> handleUserNotFoundExceptions(UserNotFoundException ex, WebRequest request) {

 //definisanje strukture odgovora za izuzetak

 ExceptionResponse exceptionResponse= new ExceptionResponse(new Date(), ex.getMessage(), request.getDescription(false));

 return new ResponseEntity(exceptionResponse, HttpStatus.NOT_FOUND); //vracanje strukture odgovora i statusa

}

@Override

protected ResponseEntity<Object> handleMethodArgumentNotValid(MethodArgumentNotValidException ex, HttpHeaders headers,
 HttpStatus status, WebRequest request) {

 ExceptionResponse exceptionResponse= new ExceptionResponse(new Date(), ex.getMessage(), ex.getBindingResult().toString());

 return new ResponseEntity(exceptionResponse, HttpStatus.BAD_REQUEST); //vracanje strukture odgovora i statusa

 }

}
Електротехнички факултет у Београду 103

Uhvaćene greške
• POST zahtev poslat iz Postman alata:

Електротехнички факултет у Београду 104

Internacionalizacija (I18N)
• Proces dizajniranja veb aplikacije ili servisa tako da se pruži automatska podrška za

različite zemlje, različite jezike, bez unošenja velikih promena unutar aplikacije.

• Lokalizacija se izvršava dodavanjem komponenti specifičnih za prevedeni tekst,
podataka koji opisuju lokalno ponašanje, itd.

• Priža punu integraciju u klase i pakete koji pružaju funkcionalnost koja zavisi od
jezika ili kulture.

• Java pruža osnovu za internacionalizaciju i za desktop i za serverske aplikacije.

• Dve stvari treba da se konfigurišu da bi servis bio internacionalan:
– LocaleResolver

– ResourceBundleMessageSource

Електротехнички факултет у Београду 105

Internacionalizacija - podrška
• Predstavljanje teksta: Java je zasnovana na Unicode skupu znakova, i nekoliko

biblioteka implementira Unicode standard.

• Identifikacija i lokalizacija: Locale u Javi su identifikatori, koji se koriste za
zahtevanje ponašanja specifičnog za lokalizaciju.
Klasa ResourceBundle podržava lokalizaciju i obezbeđuje pristup lokalnim
specifičnim objektima, uključujući i nizove.

• Rukovanje datumom i vremenom: Java nudi različite kalendare.
Podržava konverziju u/iz kalendarski nezavisnih objekata datuma.
Podržava sve vremenske zone na svetu.

• Obrada teksta: uključuje analizu znakova, mapiranje velikih i malih slova, poređenje
stringova, razvijanje teksta u reči, formatiranje brojeva, datuma i vrednosti
vremena u nizove ili njihovo raščlanjivanje iz stringova.

• Kodiranje znakova: podrška za pretvarane između Unicode i drugih kodiranja.

Електротехнички факултет у Београду 106

Internacionalizacija
• Podrazumevana vrednost za Locale je Locale.US.

• Ova vrednost se dobija uvek ukoliko nije definisana lokacija.

• Svojstva se čuvaju u objektu ResourceBundle.

• ResourceBundleMessageSource je koncept u Spring MVC za dohvatanje svojstava.

• Nakon toga koristi se MessageSource i zaglavlje Accept-Language.

• Konfigurisanje bean-a na podrazumevanu vrednost:
@Bean

public LocaleResolver localeResolver() {

SessionLocaleResolver localeResolver = new SessionLocaleResolver();

localeResolver.setDefaultLocale(Locale.US);

return localeResolver;

}

Електротехнички факултет у Београду 107

Fajlovi sa svojstvima
• messages.properties:

good.morning.message=Good Morning

 good.evening.message=Good Evening

• messages_fr.properties
good.morning.message=Bonjour

 good.evening.message=Bonne soirée

• messages_de.properties
good.morning.message=Guten Morgen

 good.evening.message=Good Abend

Електротехнички факултет у Београду 108

Konfigurisanje aplikacije
package rs.etf.server.main;

import java.util.Locale;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.annotation.Bean;

import org.springframework.context.support.ResourceBundleMessageSource;

import org.springframework.web.servlet.LocaleResolver;

import org.springframework.web.servlet.i18n.SessionLocaleResolver;

@SpringBootApplication

public class RestfulWebServicesApplication{

public static void main(String[] args){

SpringApplication.run(RestfulWebServicesApplication.class, args);

}

//konfiguracija podrazumevanog Locale

@Bean

public LocaleResolver localeResolver(){

SessionLocaleResolver localeResolver =
new SessionLocaleResolver();

localeResolver.setDefaultLocale(Locale.US);

return localeResolver;

}

//konfiguracija ResourceBundle

@Bean

public ResourceBundleMessageSource messageSource(){

ResourceBundleMessageSource
messageSource = new ResourceBundleMessageSource();

messageSource.setBasename("messages");

return messageSource;

}

}

Електротехнички факултет у Београду 109

Upotreba u kontroleru
package rs.etf.server.main.helloworld;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestHeader;

import org.springframework.web.bind.annotation.RestController;

import java.util.Locale;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.MessageSource;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.i18n.LocaleContextHolder;

@Configuration

@RestController

public class HelloWorldController {

@Autowired

private MessageSource messageSource;

@GetMapping(path="/hello-world")

public String helloWorld(){

return "Hello World";

}

@GetMapping(path="/hello-world-bean")

public HelloWorldBean helloWorldBean(){

return new HelloWorldBean("Hello World");

}

@GetMapping(path="/hello-world/path-variable/{name}")

public HelloWorldBean helloWorldPathVariable(@PathVariable
String name) {

return
new HelloWorldBean(String.format("Hello World, %s",name));

}

//internacionalizacija

@GetMapping(path="/hello-world-internationalized")

public String helloWorldInternationalized(@RequestHeader(
name="Accept-Language", required=false) Locale locale) {

return messageSource.getMessage("good.morning.message",
null, LocaleContextHolder.getLocale());

}

}

Електротехнички факултет у Београду 110

Konfigurisanje aplikacije (2)
package rs.etf.server.main;

import java.util.Locale;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.annotation.Bean;

import org.springframework.context.support.ResourceBundleMessageSource;

import org.springframework.web.servlet.LocaleResolver;

import org.springframework.web.servlet.i18n.SessionLocaleResolver;

import org.springframework.web.servlet.i18n.AcceptHeaderLocaleResolver;

@SpringBootApplication

public class RestfulWebServicesApplication{

public static void main(String[] args){

SpringApplication.run(RestfulWebServicesApplication.class, args);

}

@Bean

public LocaleResolver localeResolver(){

AcceptHeaderLocaleResolver localeResolver =
new AcceptHeaderLocaleResolver();

localeResolver.setDefaultLocale(Locale.US);

return localeResolver;

}

}

//konfiguracija ResourceBundle

// može i definisanjem u application.properties:

//spring.messages.basename=messages

@Bean

public ResourceBundleMessageSource messageSource(){

ResourceBundleMessageSource
messageSource = new ResourceBundleMessageSource();

messageSource.setBasename("messages");

return messageSource;

}

}

Електротехнички факултет у Београду 111

Prednost AcceptHeaderLocaleResolver je
što ne moramo da konfigurišemo zaglavlje
zahteva kao parametar, u svakom metodu
kontrolera.

JWT autentifikacija i autorizacija
• Postoji više načina za

autentifikaciju naših
RESTful veb servisa.

• U osnovnoj autentifikaciji
šaljemo korisničko ime i
lozinku, kao deo našeg
zahteva.

• Kod malo naprednijih oblika
autentifikacije, ne šalje se
stvarna lozinka serveru,
već se šalje sažetak.

• Najnapredniji oblici
autentifikacije danas su
OAuth i OAuth2.

Електротехнички факултет у Београду 112

Dijagram toka registracije korisnika

• 1) Proces počinje kada korisnik
podnese zahtev servisu.

• Korisnički objekat se generiše iz
podataka zahteva, pri čemu se
lozinka kodira pomoću
PasswordEncoder.

• 2) Korisnički objekat se čuva u bazi
podataka koristeći UserRepository,
koji koristi Spring Data JPA.

• 3) JwtService se poziva
da generiše JWT za objekat User.

• 4) JWT se enkapsulira u JSON
odgovor i potom se vraća korisniku.

Електротехнички факултет у Београду 113

Dijagram toka prijave u sistem

• 1) Proces počinje kada korisnik
šalje zahtev servisu.
Autentifikacioni objekat se tada
generiše, da dostavi korisničko ime
i lozinku.

• 2) AuthenticationManager je zadužen
za autentifikaciju autent. objekta, i hvatanje svih neophodnih zahteva.
Ako su korisnički ime ili lozinka nekorektni, izuzetak će biti uhvaćen, a odgovor HTTP
statusa 403 će biti vraćen korisniku.

• 3) Nakon uspešne autentifikacije, pokušava se dohvatiti korisnik iz baze podataka.
Ukoliko korisnik ne postoji, odgovor HTTP status 403 se vraća korisniku.

• 4) Nakon što imamo korisničke informacije, generišemo JWT iz servisa.

• 5) JWT se enkapsulira u JSON odgovor, koji se vraća korisniku.
Електротехнички факултет у Београду 114

Korišćenje Spring Security

Електротехнички факултет у Београду 115

Spring Boot Starter Test
• Zavisnost spring-boot-starter-test je glavna za proces testiranja.

• Sadrži glavne elemente neophodne za naše testove.

• Postoji nekoliko različitih tipova testova, koje možemo pisati za testiranje aplikacije
i automatizaciju zdravstvenog stanja aplikacije.

• Kada kreiramo Spring Boot aplikaciju, ona će u pom.xml fajlu imati zavisnosti za
testirane, a testove pišemo u folderu: src/test/java

Електротехнички факултет у Београду 116

Primer jediničnog testa
package com.javatpoint.springboottestexample;

import org.junit.jupiter.api.Test;

import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest

class SpringBootTestExampleApplicationTests {

@Test

void contextLoads() {

//sadrzaj testa

}

}

Електротехнички факултет у Београду 117

Integracioni test (za testiranje konekcije)

@RunWith(SpringRunner.class)

@SpringBootTest

public class SpringBootTomcatConnectionPoolIntegrationTest {

 @Autowired

 private DataSource dataSource;

 @Test

 public void givenConnectionPoolInstance_whenCheckedPoolClassName_thenCorrect() {

 assertThat(dataSource.getClass().getName()).isEqualTo("org.apache.tomcat.jdbc.pool.DataSource");

 }

}

Електротехнички факултет у Београду 118

Rezime

• Aplikativna klasa je ulazna tačka u Spring Boot aplikaciju i ona je označena sa
@SpringBootApplication.

• Klasa koja je označena sa @RestController, označava da je to kontroler za veb servis.

• Osnovna URL putanja za sve krajnje tačke vezane za korisnike definiše se
korišćenjem @RequestMapping(“/users”).

• Metoda koja mapira detalje o nekom korisniku, treba da sadrži obrazac /{userId}
a ispred metode treba da se nađe @GetMapping(“/{userId}”). Promenljiva putanje
userId path se ekstrahuje korišćenjem @PathVariable i prosleđuje kao parametar
metode.

• Starteri su početna podešavanja projekta, a aktuatori su potprojekti koji nam
pomažu da nadgledamo i upravljamo Spring Boot aplikacijom.

• Za proces testiranja Spring Boot aplikacije možemo koristiti jedinične testove.

Електротехнички факултет у Београду 119

PITANJA?

Hvala na pažnji☺

4/29/2024 Електротехнички факултет у Београду 120

	Slide 1: Univerzitet u Beogradu – Elektrotehnički fakultet Spring Boot
	Slide 2: Sadržaj
	Slide 3: Spring Framework arhitektura
	Slide 4: Modularnost Spring aplikacije
	Slide 5: Arhitektura aplikacije Spring
	Slide 6: MVC kontrola toka
	Slide 7: Spring i Spring Boot
	Slide 8: Zašto nam je neophodan Spring Boot?
	Slide 9: Spring Boot pokretanje
	Slide 10: Hello World
	Slide 11: Osnovne komponente Spring Boot
	Slide 12: Automatska konfiguracija
	Slide 13: Spring Boot Core i CLI
	Slide 14: Aktuatori, starteri i alati
	Slide 15: Kako koristiti Spring Boot?
	Slide 16: Kreiranje Spring Boot projekta kroz Initializr
	Slide 17: Koraci manuelne inicijalizacije
	Slide 18: Šta mi želimo? Arhitektura punog steka – Angular + Spring + MySQL
	Slide 19: Spring Rest kontroleri
	Slide 20: Primer kontrolera
	Slide 21: Application class
	Slide 22: Anotacija @SpringBootApplication
	Slide 23: Anotacija @RequestMapping
	Slide 24: Mapiranja
	Slide 25: @RequestBody i @ResponseBody
	Slide 26: @PathVariable i @RequestParam
	Slide 27: Korišćenje @PathVariable
	Slide 28: Korišćenje @RequestParam
	Slide 29: Više parametara u @RequestParam
	Slide 30: Još neka važna pravila konverzije
	Slide 31: Još neka važna pravila konverzije (2)
	Slide 32: @RequestHeader
	Slide 33: @RequestHeader
	Slide 34: @RequestHeader
	Slide 35: CORS (Cross-Origin Resource Sharing) konfiguracija
	Slide 36: @Required
	Slide 37: @Autowired
	Slide 38: @Configuration
	Slide 39: @ComponentScan
	Slide 40: @Bean
	Slide 41: @Component
	Slide 42: @Controller
	Slide 43: Razlike @Controller i @RestController
	Slide 44: Servisi @Service
	Slide 45: Repozitorijumi @Repository
	Slide 46: Repozitorijumi u strukturi projekta
	Slide 47: @Query
	Slide 48: Spring Boot arhitektura sa bazom
	Slide 49: Maven - alat za upravljanje zavisnostima
	Slide 50: spring-boot-starter-parent (pom.xml)
	Slide 51: spring-boot-starter-parent (pom.xml)
	Slide 52: Spring Boot bez Parent POM
	Slide 53: Spring Boot Application Properties
	Slide 54: Primer applicaton.properties fajla
	Slide 55: Kategorije Spring Boot osobina (property)
	Slide 56: Osobine aplikacije (1)
	Slide 57: Osobine aplikacije (2)
	Slide 58: Osobine aplikacije (3)
	Slide 59: Osobine aplikacije (4)
	Slide 60: Starteri
	Slide 61: Spring Boot starteri
	Slide 62: Spring Boot starteri (2)
	Slide 63: Spring Boot starteri (3)
	Slide 64: Spring Boot starteri (4)
	Slide 65: Produkcioni i tehnički starteri
	Slide 66: Spring Boot Starter za veb razvoj
	Slide 67: Automatska konfiguracija
	Slide 68: Zamena servera u podešavanjima
	Slide 69: JPA – Java Persistence API
	Slide 70: Arhitektura Java Persistence API
	Slide 71: Relacije između JPA klasa i interfejsa
	Slide 72: Spring Data JPA
	Slide 73: Spring Data JPA - osobine
	Slide 74: JPQL – Java Persistence Query Language
	Slide 75: Spring Data JPA repozitorijumi
	Slide 76: ORM
	Slide 77: Spring Boot aktuatori (pokretači)
	Slide 78: Karakteristike aktuatora
	Slide 79: Omogućavanje Spring Boot aktuatora
	Slide 80: Spring Boot aktuator - krajnje tačke
	Slide 81: Spring Boot aktuator - krajnje tačke (2)
	Slide 82: Spring Boot aktuator podešavanja
	Slide 83: Spring Boot JDBC
	Slide 84: Udruživanje (pooling) JDBC konekcija
	Slide 85: Šta je uloga udruživanja (pooling)?
	Slide 86: Radni okviri za udruživanje: karakteristike
	Slide 87: Radni okvir HikariCP
	Slide 88: Primer sa Hikari ili Tomcat mehanizmom
	Slide 89: Dodatna svojstva u Tomcat mehanizmu
	Slide 90: Primer bez mehanizma upravljanja konekcijama
	Slide 91: Prednosti Spring Boot u odnosu na Spring
	Slide 92: Razlike JDBC i Hibernate
	Slide 93: Spring Boot CRUD operacije
	Slide 94: Spring Boot CRUD operacije
	Slide 95: Spring Boot CRUD repozitorijum
	Slide 96: Razlike između repozitorijuma CRUD i JPA
	Slide 97: Primer sa CRUD operacijama
	Slide 98: Primer sa CRUD operacijama (2)
	Slide 99: Primer sa CRUD operacijama (3)
	Slide 100: Validacija za RESTful servise
	Slide 101: Validacija za RESTful servise (2)
	Slide 102: Validacija za RESTful servise (3)
	Slide 103: Validacija za RESTful servise (4)
	Slide 104: Uhvaćene greške
	Slide 105: Internacionalizacija (I18N)
	Slide 106: Internacionalizacija - podrška
	Slide 107: Internacionalizacija
	Slide 108: Fajlovi sa svojstvima
	Slide 109: Konfigurisanje aplikacije
	Slide 110: Upotreba u kontroleru
	Slide 111: Konfigurisanje aplikacije (2)
	Slide 112: JWT autentifikacija i autorizacija
	Slide 113: Dijagram toka registracije korisnika
	Slide 114: Dijagram toka prijave u sistem
	Slide 115: Korišćenje Spring Security
	Slide 116: Spring Boot Starter Test
	Slide 117: Primer jediničnog testa
	Slide 118: Integracioni test (za testiranje konekcije)
	Slide 119: Rezime
	Slide 120: PITANJA?

