
Zadatak 3
Opis arhitekture procesora
Procesor je nula-adresni (stek-mašina). Stek raste prema višim memorijskim

lokacijama, a SP pokazuje na prvu slobodnu lokaciju. Memorijske adrese su širine 16
bita, širina magistrale podataka je 8 bita, adresiranje je na nivou jednog bajta, a dvobajtni
podaci se u memoriju smeštaju tako da je na nižoj adresi niži bajt. Procesor operiše samo
sa 8-bitnim i 16-bitnim celobrojnim veličinama. Na dužine operanada i rezultata ukazuju
biti 0 do 2 instrukcijske reči. Vreme odziva memorije je neodređeno, magistrala je
asinhrona.

Postoje samo interni prekidi usled nedozvoljenog koda operacije i prekoračenja
(overflow). Prekidni mehanizam je vektorisan, a navedenim prekidima dodeljeni su fiksni
ulazi 0 i 2 u vektor tabeli, respektivno. Na tebelu sa adresama prekidnih rutina ukazuje
16-bitni registar IVTP.

Instrukcije su dužine jedan bajt, a samo u nekim slučajevima dva ili tri bajta, kada se u
druga dva bajta nalazi konstanta (instrukcija PUSH const). U prvoj reči su uvek kôd
operacije i informacije o dužini operanada i rezultata. Instrukcija ima format kao na slici.

7 3 2 1 0
OpCode O1L O2L RL

Skup instrukcija sa vrednostima polja OpCode dat je na slici. Oznake u uglastim
zagradama označavaju dužinu podatka: O1L označava dužinu operanda1, O2L dužinu
operanda2, a RL dužinu rezultata. Isto značenje imaju i odgovarajuća polja u instrukciji,
tako da vrednost 0 znači širinu od 8 bita, a vrednost 1 širinu od 16 bita. Operand2 je na
vrhu steka, a operand1 ispod njega. Asemblerske naredbe imaju još sufikse B ili W za
dužine operanda1, operanda2 i rezultata, respektivno (npr. ADDWBW).

Vrednost Naredba Efekat naredbe

00h PUSH const push const[RL]
01h PUSH pop addr[16]; push (addr)[RL] ; indirektno adresiranje
02h POP pop addr[16]; pop op[RL]; (addr):=op[RL]
03h SWAP pop op1[O1L]; pop op2[O2L]; push op1[O1L]; push op2[O2L]
04h INC pop op[RL]; op:=op+1; push op[RL]
05h DEC pop op[RL]; op:=op-1; push op[RL]
06h ADD pop op2[O1L]; pop op1[O2L]; res:=op1 + op2; push res[RL]
07h SUB pop op2[O1L]; pop op1[O2L]; res:=op1 − op2; push res[RL]
08h MUL pop op2[O1L]; pop op1[O2L]; res:=op1 ∗ op2; push res[RL]
09h AND pop op2[O1L]; pop op1[O2L]; res:=op1 & op2; push res[RL]
0Ah OR pop op2[O1L]; pop op1[O2L]; res:=op1 | op2; push res[RL]
0Bh XOR pop op2[O1L]; pop op1[O2L]; res:=op1 ^ op2; push res[RL]

Organizacija procesora
Na slici prikazana je principijelna šema organizacije procesora. ALU ima mogućnost

obavljanja sledećih operacija: inc, dec, add, sub, mul, and, or, xor. Kombinaciona mreža
označena sa SXT obavlja sledeće operacije: sxtA (8-bitni ulaz A proširuje znakom i 16-
bitni rezultat daje na izlaz), transferA (8-bitni ulaz A daje i na viši i na niži bajt izlaza) i
transferB (propušta 16-bitni ulaz B na izlaz). Registri X i Y imaju odvojene kontrolne
signale za upis u niži i u viši bajt.

Zadatak

a) Nacrtati detaljnu šemu kombinacione mreže označene sa SXT.

b) Nacrtati šemu kombinacione mreže koja će na internu magistralu postaviti vrednost
ulaza odgovarajućeg prekida kada se generiše upravljački signal ivteout. Signal koji je
aktivan kada je kôd operacije nedozvoljen smatrati definisanim, dok signal koji je aktivan
kada je nastupilo prekoračenje izlazi iz ALU.

c) Napisati mikroprogram za ovaj procesor (osim za naredbe sa kodom 00h do 05h, ali
predvideti njihovo postojanje i postojanje eventualnih ostalih naredbi), tako da bude

MAR

IR
SP

PC

X

ALU

A B

M
16

16
ABus

16 OVFLW

Y

16 16

SXT

8 8

H L

B A

MDR
8
8

16 8

8

DBUS

sxtA
trA
trB

IVTP

8

prilagođen mikroprogramskoj upravljačkoj jedinici, pri čemu su mikronaredbe sa
upravljačkim signalima i mikronaredbe koje definišu skok u mikroprogramu razdvojene.

d) Na asembleru ovog procesora napisati deo programa koji realizuje sledeću naredbu
dodele (Pascal):

d[i] := a[i] * b + c;

Svi podaci u naredbi su 16-bitni celi brojevi.

e) Predložiti naredbu uslovnog skoka koja bi se u potpunosti uklopila u nula-adresni
format. Ova naredba treba da je dugačka jedan bajt sa kôdom operacije. Predložiti
mnemonik i objasniti značenje naredbe. Naredba treba da omogući izvršavanje naredbi
višeg programskog jezika tipa:

if (expression1 < expression2) then ….

Objasniti kako bi se prevodila data naredba višeg programskog jezika.
Rešenja
a)

b)

Kom prekidu je dat prioritet ovako realizovanom mrežom?

IVTEout

#0

#0

#0 M15

M2

M1

M0

OpCodeErr
OVFLW

INTRQ

MUX
1 0 3

8

S0

S1

2

sxtAtrA trB

8 8 8 8
#0 A7…0 B 15…8 A7

MUX
10 3

8

S0

S1

2
8 8 8 8

#0 A7…0 B7…0A7…0

LH

c) BEGIN: PCout,MARin,trB,XHin,XLin

 read,inc,ALUout,PCin

 wmfc
 MDRout,IRin
 opcase

 ; Binarne operacije

; Dohvatanje drugog operanda
 BIN: SPout,trB,XHin,XLin
 dec,ALUout,SPin,MARin,trB,XHin,XLin
 read
 wmfc
 branch(O2L,FOP2L)
 sxtA,YHin,YLin
 ; Dohvatanje prvog operanda:
 FOP1: dec,ALUout,SPin,MARin,trB,XHin,XLin
 read
 wmfc
 branch(O1L,FOP1L)
 sxtA,XHin,XLin
 BINOP: ALUop,ALUout,MDRLin
 write
 wmfc
 ALUOP,ALUout,MDRHin
 SPout,trB,XHin,XLin
 inc,ALUout,SPin,MARin,trB,XHin,XLin
 branch(RL==0,END)
 write,inc,ALUout,SPin
 wmfc
 END: branch(IRQ,INTH)
 bruncnd(BEGIN)
 FOP2L: trA,YHin,dec,ALUout,MARin,SPin
 read,SPout,trB,XHin,XLin
 wmfc
 trA,YLin
 bruncnd(FOP1)
 FOP1L: dec,ALUout,SPin,MARin
 read,trA,XHin
 wmfc
 trA,XLin
 bruncnd(BINOP)
 ;obrada prekida
 INTH: PCout, MDRLin
 SPout, MARin, trB, XHin, XLin
 write
 wmfc
 PCout, MDRHin

inc, ALUout, MARin, trB, XHin, XLin
 write, inc, ALUout, SPin

wmfc
IVTEout, trB, XHin, XLin, YHin, YLin

 add, ALUout, trB, YHin, YLin ; množenje sa dva
 IVTPout, trB, XHin, XLin
 add, ALUout, MARin, trB, XHin, XLin
 read

 wmfc
 inc, ALUout, MARin
 read, trA, YLin, XLin
 wmfc
 tra, YHin, XHin ; jedini način da propustimo
 or, ALUout, PCin; sadržaj registra X
 ; ili Y kroz ALU
 bruncnd (BEGIN)

d) PUSHW a
 PUSHW i
 PUSHW
 PUSHB 2
 MULWBW
 ADDWWW
 PUSHW
 PUSHW b
 PUSHW
 MULWWW
 PUSHW c
 PUSHW
 ADDWWW
 PUSHW d
 PUSHW i

PUSHW
 PUSHW i ; drugi način za indeksiranje
 PUSHW ; (bez množenja)

ADDWWW
 ADDWWW
 POPW

e) Tražena instrukcija može da ima mnemonik:
 BZ (Branch on Zero)

i značenje:

 pop addr[16]; pop op[RL]; if (op = 0) goto addr;

Analogno, mogu da postoje i instrukcije BN (Branch on Negative) i BP (Branch on
Positive).

Mogli smo usvojiti i drugačiji efekat ovakvih instrukcija. Na primer:
BZ (Branch on Zero)

 pop addr[16]; pop op2[O2L]; pop op1[O1L]; res:=op1 − op2; if (op = 0) goto addr;

Analogno bi važilo i za instrukcije BN (Branch on Negative) i BP (Branch on
Positive).

Zadatak 4

Opis arhitekture procesora
Procesor je troadresni i ima 16 registara opšte namene, R0 do R15, svi su 16-bitni.

Postoje i registri PSW i SP sa uobičajenim značenjem. Memorijske adrese su širine 16
bita, širina magistrale podataka je 16 bita, a adresiranje je na nivou 16-bitnih reči.
Procesor operiše samo sa 16-bitnim celobrojnim veličinama (u daljem tekstu reč
označava 16-bitnu veličinu). Vreme odziva memorije je neodređeno, magistrala je
asinhrona.

Postoje sledeće grupe instrukcija: troadresne instrukcije (aritmetičke, logičke itd.),
dvoadresne instrikcije za prenos podataka (LOAD i STORE), jednoadresne instrukcije
(CLR, INC, DEC, PUSH, POP itd.), instrukcije skokova (bezuslovni i uslovni) i ostale
(manipulacije indikatorima, poziv potprograma, povratak iz potprograma ili prekida itd.).
Instrukcije su dužine jedne ili dve reči. U prvoj reči su uvek kôd operacije i informacije o
načinu adresiranja operanada. Samo kod instrukcija prenosa podataka (LOAD i STORE)
postoji druga reč u kojoj je adresa ili neposredni operand. Format troadresnih instrukcija i
instrukcija LOAD i STORE dat je na slici. Bit L/S označava da li se radi o LOAD ili
STORE instrukciji.

15 12 11 8 7 4 3 0
OpCode REG1 REG2 REG3

15 12 11 10 8 7 4 3 0
OpCode L/

S
AM REG2 REG3

Kod svih instrukcija (osim dvoadresnih LOAD i STORE), operandi i odredište su
isključivo u registrima R0 do R15. Troadresne instrukcije imaju sledeći format: polje
OpCode sadrži kôd operacije, polja REG1 i REG2 kodove registara (od 0 do 15) u kojima
su prvi i drugi operand, a polje REG3 kôd registra u koji se smešta rezultat.

Kod dvoadresnih instrukcija za prenos podataka (LOAD i STORE), odredište za
LOAD i izvorište za STORE su isključivo registri R0 do R15. Ovaj operand biće nazivan
prvim operandom. Drugi operand je neposredni podatak u drugoj reči instrukcije (samo
za LOAD), u nekom od registra R0 do R15, ili u memoriji. Samo ove instrukcije operišu
podacima u memoriji. Ove instrukcije imaju sledeći format prve reči: polje OpCode
sadrži kôd operacije (1100), polje L/S određuje smer prenosa (0-LOAD, 1-STORE), polje
AM sadrži kôd načina adresiranja drugog operanda, polje REG2 sadrži kôd registra u
kome je drugi operand kod registarskog direktnog adresiranja, a polje REG3 kôd registra
u kome je prvi operand koji je uvek u registru (odredište za LOAD i izvorište za
STORE). Postoje četiri načina adresiranja drugog operanda, kao što je prikazano na slici.

AM Značenje Primer u asembleru
000 Neposredno adresiranje LOAD R0, #1234h
010 Registarsko direktno STORE R1, R3
100 Memorijsko direktno STORE R2, 0100h
101 Memorijsko indirektno LOAD R1,[0100h]

Organizacija procesora
Organizacija procesora data je na slici. ALU ima, pored ostalih, i kontrolni ulaz incA

za inkrementiranje vrednosti na A ulazu. Mogu se koristiti sve potrebne ostale instrukcije
u programiranju, sa odgovarajućim mnemonicima.

IR R0
ABus

CBus

... DBus

16

16
PC

SP

Y

R15

MAR

MDR

X

ALU
A B

komb. mreža

PSW

upravljaèka
jedinica

rd
wr
fc

IRQ0:3
INTA0:3

jedinica za
opsluživanje

prekida

16
TEMP

Zadatak:
a) Nacrtati strukturnu šemu mreže koja povezuje izlaze registra Ri (i = 0…15) sa

internom magistralu M kada je aktivan upravljački signal REGout i jedan od signala
regsel1, regsel2 i regsel3, koji služe za selekciju registra pomoću polja REG1, REG2 i
REG3 instrukcijske reči.

b) Napisati mikroprogram za ovaj procesor, sa fazom izvršavanja samo za instrukciju
LOAD (za sve načine adresiranja) i sve binarne aritmetičko/logičke operacije (obrada
treba da bude u jedinstvenom mikrokodu), a predvideti postojanje ostalih. Kôd treba da
bude prilagođen mikroprogramskoj upravljačkoj jedinici, pri čemu se u jednoj
mikronaredbi nalaze i polje sa upravljačkim signalima i polja koja definišu uslovni skok
u mikroprogramu. Ne treba pisati mikroprogram za obradu prekida, ali treba predvideti
njegovo postojanje (poziv na odgovarajućim mestima). Dohvatanje eventualne druge reči
instrukcije treba da bude u fazi izvršavanja instrukcije.

c) Napisati na asembleru ovog procesora program koji inkrementira svaki element niza
reči počev od adrese 100h. Niz je dugačak onoliko koliko pokazuje sadržaj lokacije 99h.
Lokacija 98h je slobodna za korišćenje.

d) Koji način adresiranja treba dodati procesoru da bi se broj pristupa memoriji kod
pristupa elementima niza, poput onog iz prethodne tačke, smanjio? Objasniti značenje i
definisati način kodiranja ovog načina adresiranja, tako da se što bolje uklopi u dati
format instrukcija LOAD i STORE. Modifikovati prethodni program tako da se iskoristi
nov način adresiranja.

Rešenje
a) Tražena mreža prikazana je na slici.

OpCode

.

REG1 REG2 REG3

MUX

4 4 4

0 1 20
1

regsel2
regsel3

4

DC
0

reg0

1

reg1

i

regi

15

reg15
...

... ...

...

REGout

IR

Ri

M

...

b)
 ; Dohvatanje instrukcije
 BEGIN: PCout,MARin,Xin
 read,incA,ALUout,PCin
 wmfc
 MDRout,IRin
 ; Dekodovanje instrukcije
 opcase
 ; LOAD instrukcija
 LOAD: admodld ; način adresiranja za LOAD
 ; Neposredno adresiranje
 LDIMM: PCout,MARin,Xin
 read,incA,ALUout,PCin
 wmfc
 MDRout,regsel3,REGin,branch(IRR,INTH)
 bruncnd (BEGIN)
 ; Registarsko direktno adresiranje
 LDRD: regsel2,REGout,TEMPin
 TEMPout,regsel3,REGin,branch(IRR,INTH)
 bruncnd (BEGIN)
 ; Memorijsko direktno adresiranje
 LDMD: PCout,MARin,Xin
 read,incA,ALUout,PCin
 wmfc
 MDRout,MARin
 read
 wmfc
 MDRout,regsel3,REGin,branch(IRR,INTH)
 bruncnd (BEGIN)
 ; Memorijsko indirektno adresiranje
 LDMI: PCout,MARin,Xin
 read,incA,ALUout,PCin

 wmfc
 MDRout,MARin
 read
 wmfc
 MDRout,MARin
 read
 wmfc
 MDRout,regsel3,REGin,branch(IRR,INTH)
 bruncnd(BEGIN)
 ; binarne operacije
 BINOP: REGout, Xin
 Regsel2,REGout Yin
 ALUop,ALUout,ldPSW,regsel3,REGin,branch(IRR,INTH)

 bruncnd(BEGIN)

c) Traženi program je dat na slici.
 START: LOAD R0,99h ; R0:=n
 OR R0, R0, R0
 JZ END
 LOAD R1,#100h ; R1:=100h
 STORE R1,98h ; M[98h]:=&a[0]

LOOP: LOAD R2,[98h] ; R2:=a[i]
 INC R2 ; R2:=R2+1
 STORE R2,[98h] ; a[i]:=R2
 INC R1 ; R1:=R1+1
 STORE R1,98h ; M[98h]:=&a[i]
 DEC R0 ; R0:=R0-1
 JNZ LOOP ; NEXT
 END:

d) Potrebno je dodati registarsko indirektno adresiranje. Kodovanje može biti:
15 12 11 10 8 7 4 3 0
1 1 0 0 L/S 0 1 1 REG2 REG3

OpCode

AM

 START: LOAD R0,99h ; R0:=n
 OR R0, R0, R0

JZ END
 LOAD R1,#100h ; R1:=100h

LOOP: LOAD R2,[R1] ; R2:=a[i]
 INC R2 ; R2:=R2+1
 STORE R2,[R1] ; a[i]:=R2
 INC R1 ; R1:=R1+1
 DEC R0 ; R0:=R0-1
 JNZ LOOP ; NEXT
 END:

Zadatak 5

Opis arhitekture procesora
Procesor je troadresni i ima 8 registara opšte namene, R0 do R7, svi su 32-bitni.

Postoje i registri PSW i SP sa uobičajenim značenjem. Memorijske adrese su širine 32
bita, širina magistrale podataka je 32 bita, a adresiranje je na nivou 32-bitnih reči.
Procesor operiše samo sa 32-bitnim celobrojnim veličinama (u daljem tekstu reč
označava 32-bitnu veličinu). Ulazno/izlazni i memorijski adresni prostori su razdvojeni.
Vreme odziva memorije je neodređeno, magistrala je asinhrona.

Postoje spoljašnji maskirajući prekidi, za koje zahtevi dolaze po linijama IRQ0 do
IRQ7 procesora, pri čemu su svi ulazi istog prioriteta. Pri prekidu se na steku čuvaju PC,
PSW i svi R0 do R7, tim redom, i svi maskirajući prekidi se onemogučavaju brisanjem
bita I u PSW.

Postoje sledeće grupe instrukcija: troadresne instrukcije (aritmetičke, logičke itd.),
dvoadresne instrukcije za prenos podataka (MOV, IN i OUT), jednoadresne instrukcije
(CLR, INC, DEC, PUSH, POP itd.), instrukcije skokova (bezuslovni i uslovni) i ostale
(manipulacije indikatorima, poziv potprograma, povratak iz potprograma ili prekida itd.).
Instrukcije su dužine jedne do tri reči. U prvoj reči su uvek kôd operacije i informacije o
načinu adresiranja operanada. Prvi operand je i odredište.

Instrukcija MOV ima dva operanda, i oba mogu biti u svim dozvoljenim načinima
adresiranja; prvi operand je i odredište. Instrukcije IN i OUT imaju jedan operand u
registru Ri, a drugi operand može biti određen svim dozvoljenim načinima adresiranja.
Ostale instrukcije mogu imati sve operande u svim dozvoljenim načinima adresiranja.
Načini adresiranja su dati na slici.

Način adresiranja Primer u asembleru
Neposredno MOV R0, #1234h
Registarsko direktno MOV R1, R3
Registarsko indirektno MOV (R2), #1234
Registarsko indirektno sa pomerajem MOV Pom(R1),#0

Procesor poseduje posebnu instrukciju za rad sa nizovima reči u memoriji (string
instrukcija). To je troadresna instrukcija MOVS Rdst,Rsrc,Rcnt. Ona kopira blok
memorijskih reči sa jednog mesta na drugo. Adresa početka izvorišnog bloka je u registru
Rsrc, adresa početka odredišnog bloka je u registru Rdst, a dužina bloka je u registru
Rcnt, gde su Rdst,Rsrc,Rcnt registri opšte namene (R0 do R7). Sadržaj registra Rcnt
može biti i nula. Ova instrukcija menja vrednosti ovih registara. Na kraju izvršavanja ove
instrukcije, Rsrc i Rdst ukazuju na prvu memorijsku reč iza bloka izvorišta/odredišta,
Rcnt ima vrednost nula, a indikator Z se postavlja na 1. Prekid se obrađuje tek na
završetku cele instrukcije MOVS. Format ove instrukcije je dat na slici.

31 9 8 6 5 3 2 0
OpCode REGdst REGsrc REGcnt

Za potrebe maskiranja prekida postoji 32-bitni registar IMR. Biti 0 do 7 ovog registra
maskiraju ulaze IRQ0 do IRQ7, redom; ostali biti nisu značajni. Jedine instrukcije za rad
sa ovim registrom su: MOV IMR,Ri, i MOV Ri,IMR, gde je Ri jedan od R0 do R7.
Dejstvo ovih instrukcija, vidljivo za programera, je sledeće. Instrukcija MOV IMR,Ri
prebacuje osam najmlađih bita registra Ri u najmlađe bite registra IMR, a ostale bite
registra IMR postavlja na nulu. Instrukcija MOV Ri,IMR prebacuje 32 bita registra IMR
u registar Ri. Osim toga, postoje još i instrukcije INTE i INTD za dozvolu/maskiranje
svih maskirajućih prekida.

Organizacija procesora
Organizacija procesora data je na slici. ALU ima, pored ostalih, i kontrolne ulaze incA,

decA i transA za inkrementiranje, dekrementiranje, odnosno transfer vrednosti na A
ulazu. Mogu se koristiti sve potrebne ostale instrukcije u programiranju, sa
odgovarajućim mnemonicima.

IR R0
ABus

CBus

... DBus

32

32
PC

SP

Y

R7

MAR

MDR

X

ALU
A B

komb. mreža

PSW
upravljaèka

jedinica

rd
wr
fc

IRQ0:7
INTA0:7

jedinica za
opsluživanje

prekida

32
TEMP

IMR

Zadatak:

a) Sa koliko flip-flopova treba realizovati registar IMR? Koristeći registar sa tim
brojem razreda i mogućnošću paralelnog upisa (LD), prikazati način vezivanja registra
IMR sa internom magistralom.

b) Napisati mikroprogram za ovaj procesor, sa fazom izvršavanja samo za instrukciju
MOVS, a predvideti postojanje ostalih. Kôd treba da bude prilagođen mikroprogramskoj
upravljačkoj jedinici, pri čemu se u jednoj mikronaredbi nalaze i polje sa upravljačkim
signalima i polja koja definišu uslovni skok u mikroprogramu. Ne treba pisati
mikroprogram za obradu prekida. Pretpostaviti da je dohvatanje eventualne druge i treće
reči instrukcije u fazi izvršavanja instrukcija koje poseduju te reči (ne treba realizovati).

c) Odluka projektanta procesora da se prekid opslužuje tek posle izvršavanja cele
instrukcije MOVS nije dobra. Objasniti zašto.

d) Da bi se problem iz prethodne tačke eliminisao, odlučeno je da se realizacija
instrukcije MOVS promeni tako da se postojanje prekida ispituje, i eventualni prekid
opslužuje, posle svake prenesene reči (posle svake iteracije petlje). Problem je što se tada
instrukcija prekida u sredini, pa je povratak iz prekidne rutine na narednu instrukciju
nekorektan. Kratko, ali precizno objasniti kompletno rešenje ovog problema.

e) Efekat izvršavanja instrukcije MOVS realizovane na način prikazan u tački b) nije
korektan za sve moguće vrednosti odredišnog i izvorišnog operanda. Objasniti zašto i
napisati ispravan mikroprogram za ovu instrukciju. Predvideti da se obrada prekida za
instrukciju MOVS vrši na bolji način, u skladu sa diskusijom u tačkama c) i d).

Rešenje
a)

IMRout

IMR7:0

M

8

8

"0"

24

24 M7:0

M31:8

IMRin
LD

8

M7:0

b) Pretpostavka je da postoji kombinaciona mreža koja na osnovu signala regsel1,

regsel2 i regsel3 selektuje odgovarajući registar (slično kao u prethodnim
zadacima).
 ; Dohvatanje instrukcije
 BEGIN: PCout,MARin,Xin
 read,incA,ALUout,PCin,Xin
 wmfc
 MDRout,IRin
 ; Dekodovanje instrukcije
 opcase
 ; MOVS instrukcija
 MOVS: regsel3, REGout, Xin ; provera da li je Rcnt=0
 transA,ldpswz ; postavljanje indikatora Z
 branch(Z,MOVSEND) ; if Rcnt=0, goto end
 decA, ALUout, regsel3, REGin
 regsel2, REGout, MARin, Xin
 read, incA, ALUout, regsel2, REGin
 wmfc
 regsel1, REGout, MARin,Xin
 write, incA, ALUout, regsel1, REGin
 wmfc
 bruncnd(MOVS)
 MOVSEND: branch(IReq,INTH)
 bruncnd(BEGIN)

c) Izvršavanje MOVS instrukcije može da traje veoma dugo. Na primer,
MOVS R0,R0,R1, gde je R0=0, R1=FFFFFFFFh. Za sve vreme izvršavanja ove
instrukcije, svi spoljni prekidi su onemogućeni, što nikako nije dobro. Naime, ova
instrukcija predstavlja petlju, u čijoj se svakoj iteraciji prenosi po jedna reč, sasvim
nezavisno od ostalih. Zbog toga, vreme od trenutka pojave zahteva za prekid, do trenutka
njegovog prihvatanja, može da varira u jako velikim granicama. To nije dobro, jer se ni
približno ne može predvideti brzina odziva na neki spoljni događaj. To vreme zavisi i od
tekuće instrukcije, ali i od vrednosti njenih operanada. Bolje je da se prekid opslužuje
posle svake iteracije, jer je time vreme odziva na prekid svedeno na vreme prenosa samo
jedne reči.

d) Posle svake iteracije petlje MOVS (posle svakog prenosa jedne reči), stanje
procesora je konzistentno, u potpunosti kao što je to i pre početka izvršavanja MOVS
instrukcije. Naime, posle svake iteracije, Rsrc i Rdst ukazuju na narednu reč za prenos, a
Rcnt pokazuje na broj preostalih reči za prenos (može biti i nula). Naredba MOVS
upravo zahteva takvo stanje pre svog izvršavanja. Prema tome, navedeno stanje registara
predstavlja invarijantu ove instrukcije. Zato se, posle prekida iza jedne iteracije, može
započeti ista MOVS instrukcija, sa tekućim stanjem registara Rsrc, Rdst i Rcnt, koji se
ionako hardverski čuvaju na steku, i restauriraju pri povratku iz prekidne rutine. Potrebno
je, dakle, da se procesor iz prekidne rutine vrati na prekinutu instrukciju MOVS, a ne na
narednu instrukciju. Ovo se lako realizuje, tako što se, ako postoji prekid posle neke
iteracije, vrednost PC smanji za 1, tako da ukazuje na tekuću MOVS instrukciju, i ta se
vrednost stavlja na stek u mikroprogramu za obradu prekida. To je ujedno i sve što je
potrebno za rešenje problema.

e) Problem nastaje u slučaju kada se odredišni i izvorišni niz preklapaju. U
mikroprogramu realizovanom u tački b), izvorišni niz se čitao od početka i smeštao u
odredišni. Za slučaj kada se nizovi preklapaju a adresa izvorišnog niza je manja od adrese
odredišnog, tada će se dogoditi slučaj da se izvorni niz modifikuje pre nego što se
odgovarajuće lokacije prepišu u odredište. Da bismo to izbegli, u ovom slučaju moramo
da prepisivanje niza vršimo počev od kraja, kao što je to realizovano u nastavku:

 ; Dohvatanje instrukcije

 BEGIN: PCout,MARin,Xin
 read,incA,ALUout,PCin,Xin
 wmfc
 MDRout,IRin
 ; Dekodovanje instrukcije
 opcase
 ; MOVS instrukcija

MOVS: Regsel1, REGout, Yin
Regsel2, REGout, Xin
sub, ALUout, ldpswn

MOVS0: regsel3, REGout, Xin
 transA,ldpswz ; postavljanje indikatora Z

branch(Z,MOVSEND) ; if Rcnt=0, goto end
decA,ALUout,regsel3,REGin,Xin,branch(N, MOVS2)

 regsel2, REGout, MARin, Xin
 read, incA, ALUout, regsel2, REGin
 wmfc
 regsel1, REGout, MARin,Xin
 write, incA, ALUout, regsel1, REGin
 wmfc

branch(IReq,MOVSINTH)
 bruncnd(MOVS0)

MOVS2: regsel2, REGout, Yin
add, ALUout, MARin
read, regsel1, REGout, Yin
wmfc
add, ALUout, MARin
write
wmfc
branch(IReq,MOVSINTH)
bruncnd(MOVS0)

 MOVSEND: branch(IR,MOVSINTH)
 bruncnd(BEGIN)
 MOVSINTH: PCout,Xin
 decA, ALUout, PCin, bruncnd(INTH)

 Treba primetiti da u slučaju kada niz popunjavamo od nazad, registri Rsrc i Rdst

zadržavaju svoje stare vrednosti, a Rcnt se dekrementira dok ne postane nula. Takođe
treba primetiti da nismo mogli registre Rsrc i Rdst na početku mikrorograma, u slučaju
da se prepisivanje vrši od nazad, povećati za vrednost veličine niza pa dekrementirati u
svakoj iteraciji (iako se takvo rešenje prirodno nameće). Ovo nije bilo moguće zbog toga
što se provera signala prekida vrši posle svake iteracije. Naime, stanje svih registara posle
povratka iz prekida bi bilo konzistentno, ali ne bismo mogli da izbegnemo ponovno
uvećavanje registara Rsrc i Rdst, a oni ne bi smeli više od jednom da se uvećaju za
dužinu niza.

