Zadatak 3
Opis arhitekture procesora

Procesor je nula-adresni (stek-maSina). Stek raste prema viSim memorijskim
lokacijama, a SP pokazuje na prvu slobodnu lokaciju. Memorijske adrese su Sirine 16
bita, Sirina magistrale podataka je 8 bita, adresiranje je na nivou jednog bajta, a dvobajtni
podaci se u memoriju smestaju tako da je na nizoj adresi nizi bajt. Procesor operise samo
sa 8-bitnim i1 16-bitnim celobrojnim veli¢inama. Na duzine operanada i rezultata ukazuju
biti 0 do 2 instrukcijske re¢i. Vreme odziva memorije je neodredeno, magistrala je
asinhrona.

Postoje samo interni prekidi usled nedozvoljenog koda operacije i prekoracenja
(overflow). Prekidni mehanizam je vektorisan, a navedenim prekidima dodeljeni su fiksni
ulazi 0 1 2 u vektor tabeli, respektivno. Na tebelu sa adresama prekidnih rutina ukazuje
16-bitni registar IVTP.

Instrukcije su duzine jedan bajt, a samo u nekim sluc¢ajevima dva ili tri bajta, kada se u
druga dva bajta nalazi konstanta (instrukcija PUSH const). U prvoj re¢i su uvek kod
operacije 1 informacije o duzini operanada i rezultata. Instrukcija ima format kao na slici.

7 3 2 1 0
[OpCode |OL|O.L|RL|

Skup instrukcija sa vrednostima polja OpCode dat je na slici. Oznake u uglastim
zagradama oznacavaju duzinu podatka: O,L oznafava duzinu operanda;, O,L duzinu
operanda,, a RL duzinu rezultata. Isto znaCenje imaju 1 odgovarajuca polja u instrukeiji,
tako da vrednost 0 znaci Sirinu od 8 bita, a vrednost 1 Sirinu od 16 bita. Operand, je na
vrhu steka, a operand, ispod njega. Asemblerske naredbe imaju joS sufikse B ili W za
duZzine operanda,, operandas 1 rezultata, respektivno (npr. ADDWBW).

Vrednost | Naredba Efekat naredbe
00h |PUSH const |push const[RL]
01h PUSH pop addr[16]; push (addr)[RL] ; indirektno adresiranje
02h POP pop addr[16]; pop op[RL]; (addr):=op[RL]
03h |SWAP pop opi[O:L]; pop op,[O-L]; push opi[O,L]; push op,[O,L]
04h [INC pop op[RL]; op.=op+1; push op[RL]
05h |DEC pop op[RL]; op:=op-1; push op[RL]
06h |ADD pop op>[O\L]; pop opi[O,L]; res:=op, + op,; push res[RL]
07h |SUB pop opo[O1L]; pop op,[OsL]; res:=op, — op,; push res[RL]
08h |MUL pop op,[O.L]; pop opi[O,L]; res:=op, * op,; push res[RL]
0% |AND pop 0p,[O1L]; pop op,[O-L]; res:=op; & op,; push res[RL]
0Ah |OR pop op,[O.L]; pop opi[O,L]; res:=op; | op,; push res[RL]
0Bh |XOR pop op>[O,L]; pop opi[O,L]; res:=op, " op,; push res[RL]

Organizacija procesora

Na slici prikazana je principijelna Sema organizacije procesora. ALU ima moguénost
obavljanja slede¢ih operacija: inc, dec, add, sub, mul, and, or, xor. Kombinaciona mreza
oznacena sa SXT obavlja slede¢e operacije: sxt4 (8-bitni ulaz A prosiruje znakom i 16-
bitni rezultat daje na izlaz), transfer4 (8-bitni ulaz A daje i na visi i na nizi bajt izlaza) i
transferB (propusta 16-bitni ulaz B na izlaz). Registri X 1 Y imaju odvojene kontrolne
signale za upis u nizi i u visi bajt.

M
16/ DBUS
‘3
« 7 8
8
MDR
8
16 |
SXtA— B
trA— SXT
trB— L
8 8
4 A A 4
x0T
16 16
A o B
ALU
16 OVFLW
PC
8 IR
. > SP
MAR TABuS
IVTP

Zadatak
a) Nacrtati detaljnu Semu kombinacione mreze oznacene sa SXT.

b) Nacrtati Semu kombinacione mreze koja ¢e na internu magistralu postaviti vrednost
ulaza odgovarajuc¢eg prekida kada se generiSe upravljacki signal ivte . Signal koji je
aktivan kada je kod operacije nedozvoljen smatrati definisanim, dok signal koji je aktivan
kada je nastupilo prekoracenje izlazi iz ALU.

c¢) Napisati mikroprogram za ovaj procesor (osim za naredbe sa kodom 00h do 05h, ali
predvideti njihovo postojanje i postojanje eventualnih ostalih naredbi), tako da bude

prilagoden mikroprogramskoj upravljackoj jedinici, pri ¢emu su mikronaredbe sa
upravljackim signalima i mikronaredbe koje definiSu skok u mikroprogramu razdvojene.

d) Na asembleru ovog procesora napisati deo programa koji realizuje slede¢u naredbu
dodele (Pascal):

d[i] := a[i]l * b + c;
Svi podaci u naredbi su 16-bitni celi brojevi.

e) Predloziti naredbu uslovnog skoka koja bi se u potpunosti uklopila u nula-adresni
format. Ova naredba treba da je dugacka jedan bajt sa kodom operacije. Predloziti
mnemonik i1 objasniti znacenje naredbe. Naredba treba da omoguci izvrSavanje naredbi
viSeg programskog jezika tipa:

ifT (expressionl < expression2) then ...

Objasniti kako bi se prevodila data naredba viSeg programskog jezika.

ReSenja
a)
trA sxtA trB
#0 A7.HOBISA..8 A7 #0 A7.4.0 B7..40A7...0
18 /8 I8 48 18 48 48 48
0o 1 2 3gl S0 1 2 3
MUX s, MUX
18 18
H L
b)
IVTEout

#-——{ >M,

OpCodeE
%\(/)Fiv{/r?—@ \/E M,
@ #04§7M2

INTRQ ~ #0— >—M,,

Kom prekidu je dat prioritet ovako realizovanom mrezom?

BEGIN:

PCout,MARin, trB, XHin, XLin
read, inc, ALUout, PCin

wmfc
MDRout, IRin
opcase

; Binarne operacije
; Dohvatanje drugog operanda

BIN:

SPout, trB,XHin, XLin

dec, ALUout, SPin,MARin, trB, XHin, XLin
read

wmfc

branch (0,L, FOP2L)

sxtA,YHin,YLin

; Dohvatanje prvog operanda:

FOP1:

BINOP:

END:

FOP2L:

FOP1L:

INTH:

dec, ALUout, SPin,MARin, trB, XHin, XLin
read

wmfc

branch (0L, FOP1L)

sxtA,XHin, XLin

ALUop, ALUout, MDRLin

write

wmfc

ALUOP, ALUout, MDRHin

SPout, trB,XHin, XLin

inc,ALUout, SPin,MARin, trB, XHin, XLin
branch (RL==0, END)

write, inc,ALUout, SPin

wmfc

branch (IRQ, INTH)

bruncnd (BEGIN)
trA,YHin, dec, ALUout,MARin, SPin
read, SPout, trB, XHin, XLin

wmfc

trA,YLin

bruncnd (FOP1)

dec,ALUout, SPin,MARin

read, trA, XHin

wmfc

trA,XLin

bruncnd (BINOP)

;obrada prekida

PCout, MDRLin

SPout, MARin, trB, XHin, XLin

write

wmfc

PCout, MDRHin

inc, ALUout, MARin, trB, XHin, XLin
write, inc, ALUout, SPin

wmfc

IVTEout, trB, XHin, XLin, YHin, YLin
add, ALUout, trB, YHin, YLin ; mnoZenje sa dva
IVTPout, trB, XHin, XLin

add, ALUout, MARin, trB, XHin, XLin
read

wmfc
inc, ALUout, MARin
read, trA, YLin, XLin
wmfc
tra, YHin, XHin ; jedini nacdin da propustimo
or, ALUout, PCin; sadrzZzaj registra X
; 111 Y kroz ALU
bruncnd (BEGIN)

d) PUSHW
PUSHW
PUSHW
PUSHB 2
MULWBW
ADDWWW
PUSHW
PUSHW b
PUSHW
MULWWW
PUSHW c
PUSHW
ADDWWW
PUSHW d
PUSHW i
PUSHW
PUSHW i ; drugi nac¢in za indeksiranije
PUSHW ; (bez mnoZenija)

ADDWWW
ADDWWW
POPW

(T

e) Trazena instrukcija moze da ima mnemonik:

BZ (Branch on Zero)
i znacenje:
pop addr[16]; pop op[RL]; if (op = 0) goto addr,

Analogno, mogu da postoje i instrukcije BN (Branch on Negative) i BP (Branch on
Positive).

Mogli smo usvojiti i drugaciji efekat ovakvih instrukcija. Na primer:
BZ (Branch on Zero)
pop addr[16]; pop op2[O:L]; pop opi[O/L]; res:=op, — op»; if (op = 0) goto addr,

Analogno bi vazilo i za instrukcije BN (Branch on Negative) 1 BP (Branch on
Positive).

Zadatak 4

Opis arhitekture procesora

Procesor je troadresni i ima 16 registara opste namene, RO do R15, svi su 16-bitni.
Postoje 1 registri PSW 1 SP sa uobicajenim znacenjem. Memorijske adrese su Sirine 16
bita, Sirina magistrale podataka je 16 bita, a adresiranje je na nivou 16-bitnih reci.
Procesor operiSe samo sa 16-bitnim celobrojnim veliCinama (u daljem tekstu rec
oznacava 16-bitnu veli¢inu). Vreme odziva memorije je neodredeno, magistrala je
asinhrona.

Postoje sledece grupe instrukcija: troadresne instrukcije (aritmeticke, logicke itd.),
dvoadresne instrikcije za prenos podataka (LOAD i1 STORE), jednoadresne instrukcije
(CLR, INC, DEC, PUSH, POP itd.), instrukcije skokova (bezuslovni i uslovni) i ostale
(manipulacije indikatorima, poziv potprograma, povratak iz potprograma ili prekida itd.).
Instrukcije su duzine jedne ili dve reci. U prvoj re¢i su uvek kdd operacije i informacije o
nacinu adresiranja operanada. Samo kod instrukcija prenosa podataka (LOAD i STORE)
postoji druga rec¢ u kojoj je adresa ili neposredni operand. Format troadresnih instrukcija i
instrukcija LOAD 1 STORE dat je na slici. Bit L/S oznacava da li se radi o LOAD ili
STORE instrukeiji.

15 12 11 8 7 4 3 0

| OpCode | REGI | REG2 | REG3 |
15 12 11 10 8 7 4 3 0

OpCode |L/| AM REG2 REG3
S

Kod svih instrukcija (osim dvoadresnih LOAD i STORE), operandi i odrediSte su
isklju¢ivo u registrima RO do R15. Troadresne instrukcije imaju slede¢i format: polje
OpCode sadrzi kod operacije, polja REGI i REG2 kodove registara (od 0 do 15) u kojima
su prvi 1 drugi operand, a polje REG3 kod registra u koji se smesta rezultat.

Kod dvoadresnih instrukcija za prenos podataka (LOAD i STORE), odrediste za
LOAD i izvoriste za STORE su iskljucivo registri RO do R15. Ovaj operand bi¢e nazivan
prvim operandom. Drugi operand je neposredni podatak u drugoj reci instrukcije (samo
za LOAD), u nekom od registra RO do R15, ili u memoriji. Samo ove instrukcije operisu
podacima u memoriji. Ove instrukcije imaju slede¢i format prve re¢i: polje OpCode
sadrzi kod operacije (1100), polje L/S odreduje smer prenosa (0-LOAD, 1-STORE), polje
AM sadrzi kod nacina adresiranja drugog operanda, polje REG2 sadrzi kod registra u
kome je drugi operand kod registarskog direktnog adresiranja, a polje REG3 kod registra
u kome je prvi operand koji je uvek u registru (odrediste za LOAD 1 izvoriSte za
STORE). Postoje Cetiri nacina adresiranja drugog operanda, kao §to je prikazano na slici.

AM Znacenje Primer u asembleru
000 |Neposredno adresiranje [LOAD RO, #1234h
010 [Registarsko direktno STORE R1, R3

100 [Memorijsko direktno STORE R2, 0100h
101 [Memorijsko indirektno |LOAD R1,[0100h]

Organizacija procesora

Organizacija procesora data je na slici. ALU ima, pored ostalih, i kontrolni ulaz inc4
za inkrementiranje vrednosti na A ulazu. Mogu se koristiti sve potrebne ostale instrukcije
u programiranju, sa odgovaraju¢im mnemonicima.

16
| R | RO | AlB(‘;S
| PC — | R15 | DBUS
16
| SP E—— TEMP | .
| X 1 MAR }
—_—
| Y T — MDR =
I
: . jedinica za IRQO:3
’ ALU : P rekida INTAO:3
! rd
| komb.\Tr/nreia | Upfz‘:lj_lljf‘:léka "
1 N jedinica T
| PSW |

Zadatak:

a) Nacrtati strukturnu Semu mreze koja povezuje izlaze registra Ri (i=0...15) sa
internom magistralu M kada je aktivan upravljacki signal REGout i jedan od signala
regsell, regsel2 i regsel3, koji sluze za selekciju registra pomocu polja REG1, REG2 i
REG3 instrukcijske reci.

b) Napisati mikroprogram za ovaj procesor, sa fazom izvrSavanja samo za instrukciju
LOAD (za sve nacine adresiranja) i sve binarne aritmeti¢ko/logi¢ke operacije (obrada
treba da bude u jedinstvenom mikrokodu), a predvideti postojanje ostalih. Kod treba da
bude prilagoden mikroprogramskoj upravljackoj jedinici, pri ¢emu se u jednoj
mikronaredbi nalaze i polje sa upravljackim signalima i polja koja definiSu uslovni skok
u mikroprogramu. Ne treba pisati mikroprogram za obradu prekida, ali treba predvideti
njegovo postojanje (poziv na odgovaraju¢im mestima). Dohvatanje eventualne druge reci
instrukcije treba da bude u fazi izvrSavanja instrukcije.

c¢) Napisati na asembleru ovog procesora program koji inkrementira svaki element niza
reci poc€ev od adrese 100h. Niz je dugacak onoliko koliko pokazuje sadrzaj lokacije 99h.
Lokacija 98h je slobodna za koris¢enje.

d) Koji nacin adresiranja treba dodati procesoru da bi se broj pristupa memoriji kod
pristupa elementima niza, poput onog iz prethodne tacke, smanjio? Objasniti znacenje i
definisati nacin kodiranja ovog nacina adresiranja, tako da se Sto bolje uklopi u dati
format instrukcija LOAD i STORE. Modifikovati prethodni program tako da se iskoristi
nov nacin adresiranja.

ReSenje

a) Trazena mreza prikazana je na slici.

IR
| opcode | reci | Rrecz | rees
4’_ 4’, 41
regsel2 —| o 0 1 2
regseld —| 1 MUX
4’_
DC
0 1 .. i . 15
T I R
reg0 regl regi regls
REGout ’ |.= nes
M
b)
; Dohvatanje instrukcije
BEGIN: PCout,MARin, Xin
read, incA,ALUout, PCin
wmfc
MDRout, IRin
; Dekodovanje instrukcije
opcase
; LOAD instrukcija
LOAD: admodld ; nac¢in adresiranja za LOAD
; Neposredno adresiranje
LDIMM: PCout,MARin, Xin
read, incA,ALUout, PCin
wmfc

MDRout, regsel3, REGin, branch (IRR, INTH)
bruncnd (BEGIN)
; Registarsko direktno adresiranje
LDRD: regsel?2,REGout, TEMPin
TEMPout, regsel3, REGin, branch (IRR, INTH)
bruncnd (BEGIN)
; Memorijsko direktno adresiranje
LDMD: PCout,MARin, Xin
read, incA,ALUout, PCin
wmfc
MDRout, MARin
read
wmfc
MDRout, regsel3, REGin, branch (IRR, INTH)
bruncnd (BEGIN)
; Memorijsko indirektno adresiranje
LDMI: PCout,MARin, Xin
read, incA, ALUout, PCin

wmfc
MDRout, MARin
read
wmfc
MDRout,MARin
read
wmfc
MDRout, regsel3, REGin, branch (IRR, INTH)
bruncnd (BEGIN)
; binarne operacije
BINOP: REGout, Xin
Regsel2,REGout Yin
ALUop, ALUout, 1dPSW, regsel3,REGin, branch (IRR, INTH)
bruncnd (BEGIN)

c¢) TraZeni program je dat na slici.

START : LOAD RO, 99h ; RO:=n
OR RO, RO, RO
JZ END
LOAD R1,#100h ; R1:=100h
STORE R1, 98h ; M[98h]:=&a[0]
LOOP: LOAD R2, [98h] ; R2:=al[i]
INC R2 ; R2:=R2+1
STORE R2, [98h] ; al[i]:=R2
INC R1 ; R1:=R1+1
STORE R1, 98h ; M[98h]:=gali]
DEC RO ; RO:=RO-1
JINZ LOOP ; NEXT
END:

d) Potrebno je dodati registarsko indirektno adresiranje. Kodovanje moze biti:

15 12 11 10 8 7 4 3 0
[1]1]ofofsfof1]1] REG2 | REG3 |
- -
OpCode AM
START : LOAD RO, 99nh ; RO:=n
OR RO, RO, RO
JZ END
LOAD R1, #100h ; R1:=100h
LOOP: LOAD R2, [R1] ; R2:=a[i]
INC R2 ; R2:=R2+1
STORE R2, [R1] ; ali]:=R2
INC R1 ; R1:=R1+1
DEC RO ; RO:=RO-1
JINZ LOOP ; NEXT

END:

31

Zadatak 5

Opis arhitekture procesora

Procesor je troadresni 1 ima 8 registara opSte namene, RO do R7, svi su 32-bitni.
Postoje 1 registri PSW i SP sa uobicajenim znacenjem. Memorijske adrese su Sirine 32
bita, Sirina magistrale podataka je 32 bita, a adresiranje je na nivou 32-bitnih reci.
Procesor operiSe samo sa 32-bitnim celobrojnim veli¢inama (u daljem tekstu rec
oznacava 32-bitnu veli¢inu). Ulazno/izlazni 1 memorijski adresni prostori su razdvojeni.
Vreme odziva memorije je neodredeno, magistrala je asinhrona.

Postoje spoljasnji maskirajué¢i prekidi, za koje zahtevi dolaze po linijama IRQO do
IRQ7 procesora, pri ¢emu su svi ulazi istog prioriteta. Pri prekidu se na steku cuvaju PC,
PSW 1 svi RO do R7, tim redom, i svi maskiraju¢i prekidi se onemogucavaju brisanjem
bita I u PSW.

Postoje sledece grupe instrukcija: troadresne instrukcije (aritmeticke, logicke itd.),
dvoadresne instrukcije za prenos podataka (MOV, IN i OUT), jednoadresne instrukcije
(CLR, INC, DEC, PUSH, POP itd.), instrukcije skokova (bezuslovni i uslovni) 1 ostale
(manipulacije indikatorima, poziv potprograma, povratak iz potprograma ili prekida itd.).
Instrukcije su duzine jedne do tri re¢i. U prvoj reci su uvek kod operacije i informacije o
nacinu adresiranja operanada. Prvi operand je i odrediste.

Instrukcija MOV ima dva operanda, i oba mogu biti u svim dozvoljenim na¢inima
adresiranja; prvi operand je i odrediste. Instrukcije IN i OUT imaju jedan operand u
registru Ri, a drugi operand moze biti odreden svim dozvoljenim nacinima adresiranja.
Ostale instrukcije mogu imati sve operande u svim dozvoljenim nacinima adresiranja.
Nacini adresiranja su dati na slici.

Nadin adresiranja Primer u asembleru
Neposredno MOV RO, #1234h
Registarsko direktno MOV R1, R3
Registarsko indirektno MOV (R2), #1234
Registarsko indirektno sa pomerajem [MOV Pom(R1),#0

Procesor poseduje posebnu instrukciju za rad sa nizovima re¢i u memoriji (string
instrukcija). To je troadresna instrukcija MOVS Rdst,Rsrc,Rent. Ona kopira blok
memorijskih reci sa jednog mesta na drugo. Adresa pocetka izvorisnog bloka je u registru
Rsrc, adresa pocetka odrediSnog bloka je u registru Rdst¢, a duzina bloka je u registru
Rent, gde su Rdst,Rsrc,Rent registri opste namene (RO do R7). Sadrzaj registra Rent
moze biti 1 nula. Ova instrukcija menja vrednosti ovih registara. Na kraju izvrSavanja ove
instrukcije, Rsrc 1 Rdst ukazuju na prvu memorijsku re¢ iza bloka izvoriSta/odredista,
Rent ima vrednost nula, a indikator Z se postavlja na 1. Prekid se obraduje tek na
zavrSetku cele instrukcije MOVS. Format ove instrukcije je dat na slici.

9 8 6 5 3 2

0

OpCode | REGdst | REGsre | REGent |

Za potrebe maskiranja prekida postoji 32-bitni registar IMR. Biti 0 do 7 ovog registra
maskiraju ulaze IRQO do IRQ7, redom; ostali biti nisu znacajni. Jedine instrukcije za rad
sa ovim registrom su: MOV IMR,Ri, i MOV Ri,IMR, gde je Ri jedan od RO do R7.
Dejstvo ovih instrukcija, vidljivo za programera, je sledece. Instrukcija MOV IMR,Ri
prebacuje osam najmladih bita registra Ri u najmlade bite registra IMR, a ostale bite
registra IMR postavlja na nulu. Instrukcija MOV Ri,IMR prebacuje 32 bita registra IMR
u registar Ri. Osim toga, postoje jo$ i instrukcije INTE i INTD za dozvolu/maskiranje
svih maskirajucih prekida.

Organizacija procesora

Organizacija procesora data je na slici. ALU ima, pored ostalih, i kontrolne ulaze incA4,
decA 1 transA za inkrementiranje, dekrementiranje, odnosno transfer vrednosti na A

ulazu. Mogu se koristiti sve potrebne ostale instrukcije u programiranju, sa
odgovaraju¢im mnemonicima.

32
I =
| PC E— R7 | DBus
32
| SP] TEMP |
| X MAR I CBus
| Y ——| MDR S
[
\|/ \|/ jeldig_ica za IRQO:7
A ALL & P ek INTAO:7
\t > IIMR
| komb. mreza | .
B B upravljaéka wr
| PSW | — jedinica fc

Zadatak:

a) Sa koliko flip-flopova treba realizovati registar IMR? Koriste¢i registar sa tim
brojem razreda i moguénoscu paralelnog upisa (LD), prikazati nadin vezivanja registra
IMR sa internom magistralom.

b) Napisati mikroprogram za ovaj procesor, sa fazom izvrSavanja samo za instrukciju
MOVS, a predvideti postojanje ostalih. Kod treba da bude prilagoden mikroprogramskoj
upravljackoj jedinici, pri ¢emu se u jednoj mikronaredbi nalaze i polje sa upravljackim
signalima 1 polja koja definiSu uslovni skok u mikroprogramu. Ne treba pisati
mikroprogram za obradu prekida. Pretpostaviti da je dohvatanje eventualne druge i trece
reci instrukceije u fazi izvrSavanja instrukcija koje poseduju te reci (ne treba realizovati).

c) Odluka projektanta procesora da se prekid opsluzuje tek posle izvrSavanja cele
instrukcije MOVS nije dobra. Objasniti zaSto.

d) Da bi se problem iz prethodne tacke eliminisao, odlu¢eno je da se realizacija
instrukcije MOVS promeni tako da se postojanje prekida ispituje, i eventualni prekid
opsluzuje, posle svake prenesene reci (posle svake iteracije petlje). Problem je $to se tada
instrukcija prekida u sredini, pa je povratak iz prekidne rutine na narednu instrukciju
nekorektan. Kratko, ali precizno objasniti kompletno reSenje ovog problema.

e) Efekat izvrSavanja instrukcije MOVS realizovane na nacin prikazan u tacki b) nije
korektan za sve moguce vrednosti odrediSnog i izvoriSnog operanda. Objasniti zaSto i
napisati ispravan mikroprogram za ovu instrukciju. Predvideti da se obrada prekida za
instrukciju MOVS vrsi na bolji nacin, u skladu sa diskusijom u tatkama c) i d).

ReSenje
a)
M
M7:0
18 .
IMRIn
"o IMR7:0 LD —
24 8
24 .
IMRout 8 M7:0
M31:8

b) Pretpostavka je da postoji kombinaciona mreza koja na osnovu signala regsell,
regsel2 1 regsel3 selektuje odgovarajuéi registar (slicno kao u prethodnim
zadacima).

; Dohvatanje instrukcije

BEGIN: PCout,MARin, Xin
read, incA, ALUout, PCin, Xin
wmfc

MDRout, IRin
; Dekodovanje instrukcije

opcase

; MOVS instrukcija

MOVS: regsel3, REGout, Xin ; provera da 1li je Rcnt=0
transA, ldpswz ; postavljanje indikatora Z
branch (z,MOVSEND) ; if Rcnt=0, goto end

decA, ALUout, regsel3, REGin
regsel2, REGout, MARin, Xin

read, 1incA, ALUout, regsel2, REGin
wmfc

regsell, REGout, MARin,Xin

write, incA, ALUout, regsell, REGin

wmfc
bruncnd (MOVS)
MOVSEND: branch (IReq, INTH)

bruncnd (BEGIN)

c) lIzvrSavanje MOVS instrukcije moZze da traje veoma dugo. Na primer,
MOVS RO,RO,R1, gde je R0=0, RI=FFFFFFFFh. Za sve vreme izvrSavanja ove
instrukcije, svi spoljni prekidi su onemogucéeni, Sto nikako nije dobro. Naime, ova
instrukcija predstavlja petlju, u ¢ijoj se svakoj iteraciji prenosi po jedna rec, sasvim
nezavisno od ostalih. Zbog toga, vreme od trenutka pojave zahteva za prekid, do trenutka
njegovog prihvatanja, moze da varira u jako velikim granicama. To nije dobro, jer se ni
priblizno ne moze predvideti brzina odziva na neki spoljni dogadaj. To vreme zavisi i od
tekuce instrukcije, ali 1 od vrednosti njenih operanada. Bolje je da se prekid opsluzuje
posle svake iteracije, jer je time vreme odziva na prekid svedeno na vreme prenosa samo
jedne reci.

d) Posle svake iteracije petlle MOVS (posle svakog prenosa jedne reci), stanje
procesora je konzistentno, u potpunosti kao $to je to i pre pocetka izvrSavanja MOVS
instrukcije. Naime, posle svake iteracije, Rsrc 1 Rdst ukazuju na narednu rec za prenos, a
Rent pokazuje na broj preostalih rec¢i za prenos (moze biti i nula). Naredba MOVS
upravo zahteva takvo stanje pre svog izvrSavanja. Prema tome, navedeno stanje registara
predstavlja invarijantu ove instrukcije. Zato se, posle prekida iza jedne iteracije, moze
zapoceti ista MOVS instrukcija, sa teku¢im stanjem registara Rsrc, Rdst 1 Rent, koji se
ionako hardverski ¢uvaju na steku, i restauriraju pri povratku iz prekidne rutine. Potrebno
je, dakle, da se procesor iz prekidne rutine vrati na prekinutu instrukciju MOVS, a ne na
narednu instrukciju. Ovo se lako realizuje, tako $to se, ako postoji prekid posle neke
iteracije, vrednost PC smanji za 1, tako da ukazuje na teku¢u MOVS instrukciju, 1 ta se
vrednost stavlja na stek u mikroprogramu za obradu prekida. To je ujedno i sve Sto je
potrebno za resenje problema.

e) Problem nastaje u sluaju kada se odrediSni i1 izvoriSni niz preklapaju. U
mikroprogramu realizovanom u tacki b), izvoriS$ni niz se ¢itao od pocetka i smestao u
odredisni. Za slu¢aj kada se nizovi preklapaju a adresa izvoriSnog niza je manja od adrese
odredi$nog, tada ¢e se dogoditi slucaj da se izvorni niz modifikuje pre nego §to se
odgovarajuce lokacije prepisSu u odrediste. Da bismo to izbegli, u ovom sluc¢aju moramo
da prepisivanje niza vr§imo pocev od kraja, kao §to je to realizovano u nastavku:

; Dohvatanje instrukcije

BEGIN: PCout,MARin, Xin
read, incA, ALUout, PCin, Xin
wmfc

MDRout, IRin
; Dekodovanje instrukcije

opcase
; MOVS instrukcija
MOVS: Regsell, REGout, Yin

Regsel2, REGout, Xin
sub, ALUout, ldpswn

MOVSO: regsel3, REGout, Xin
transA, ldpswz ; postavljanje indikatora Z
branch (z,MOVSEND) ; if Rcnt=0, goto end

decA, ALUout, regsel3, REGin, Xin, branch (N, MOVS2)

regsel2, REGout, MARin, Xin

read, incA, ALUout, regsel2, REGin
wmfc

regsell, REGout, MARin,Xin

write, incA, ALUout, regsell, REGin
wmfc

branch (IReq, MOVSINTH)

bruncnd (MOVSO0)

MOVS2: regsel?2, REGout, Yin
add, ALUout, MARin
read, regsell, REGout, Yin
wmfc
add, ALUout, MARin
write
wmfc
branch (IReq, MOVSINTH)
bruncnd (MOVSO0)

MOVSEND : branch (IR, MOVSINTH)
bruncnd (BEGIN)
MOVSINTH: PCout, Xin

decA, ALUout, PCin, bruncnd (INTH)

Treba primetiti da u sluc¢aju kada niz popunjavamo od nazad, registri Rsrc 1 Rdst
zadrzavaju svoje stare vrednosti, a Rent se dekrementira dok ne postane nula. Takode
treba primetiti da nismo mogli registre Rsrc i Rdst na poc¢etku mikrorograma, u slucaju
da se prepisivanje vrsi od nazad, povecati za vrednost veliine niza pa dekrementirati u
svakoj iteraciji (iako se takvo resenje prirodno namece). Ovo nije bilo moguce zbog toga
Sto se provera signala prekida vr$i posle svake iteracije. Naime, stanje svih registara posle
povratka iz prekida bi bilo konzistentno, ali ne bismo mogli da izbegnemo ponovno
uvecavanje registara Rsrc 1 Rdst, a oni ne bi smeli visSe od jednom da se uvecaju za
duzinu niza.

