Genetic Algorithms for Intelligent Internet Search:

A Survey and a Package for Experimenting with Various Locality Types

Jelena Mirković, Dragana Cvetković, Nela Tomča, Suzana Cvetićanin,
Saša Slijepčević, Vladan Obradović, Mladen Mrkić, Igor Čakulev, Laslo Kraus, Veljko Milutinović

Department of Computer Engineering, School of Electrical Engineering, University of Belgrade

POB 35-54, 11120 Belgrade, Serbia, Yugoslavia

sunshine@cs.ucla.edu, dana@galeb.etf.bg.ac.yu, nela@galeb.etf.bg.ac.yu, sascha@cs.ucla.edu, vm@etf.bg.ac.yu

Abstract

As the number of documents and servers on Internet grows with the enormous speed, it becomes necessary to design efficient algorithms and tools for search and retrieval of documents. This paper describes several existing solutions to the problem and discusses the implementation of one software package for experimenting with intelligent genetic algorithms for Internet search. Special emphasis is devoted to the exploitation of various locality types (topic, spatial, temporal) in the process of genetic mutation.

Introduction
Among the huge number of documents and servers on Internet, it is hard to quickly locate documents that contain potentially useful information. Therefore, the key factor in software development nowadays should be the design of applications that efficiently locate and retrieve Internet documents that best meet user's requests. The accent is on intelligent content examination and selection of documents that are most similar to those submitted by the user, as input.

One approach to this problem is indexing all accessible Web pages and storing this information into the database. When the application is started, it extracts keywords from the user supplied documents and consults the database to find documents in which given keywords appear with the greatest frequency. This approach, besides the need to maintain a huge database, suffers from the poor performance - it gives numerous documents totally unconnected to the user's topic of interest.

The second approach is to follow links from a number of documents submitted by the user and to find the most similar ones, performing a genetic search on the Internet. Namely, application starts from a set of input documents, and by following their links, it finds documents that are most similar to them. This search and evaluation are performed using genetic algorithms as a heuristic search method. If only links from input documents are followed, it is the Best First Search, or genetic search without mutation. If, besides the links of the input documents, some other links are also examined, it is genetic search with mutation.

The second approach was realized and tested at the University of Hong Kong, and results were presented at the 30th Annual Hawaii International Conference of System Sciences [4]. The Best First Search was compared to genetic search where mutation was performed by picking a URL from a subset of URLs covering the selected topic. That subset is obtained from a compile-time generated database. It was shown that search using genetic algorithms gives better results than the Best First Search for a small set of input documents, because it is able to step outside the local domain and to examine a larger search space.

There is an ongoing research at the University of Belgrade concerning mutation exploiting spatial and temporal locality. The idea of spatial locality exploitation is to examine documents in the neighborhood of the best ranked documents so far, i.e. the same server or local network. Temporal locality concerns maintaining information about previous search results and performing mutation by picking URLs from that set.

If either of above described methods is performed, a lot of time is spent for fetching documents from the Internet onto the local disk, because content examination and evaluation must be performed off-line. Thus, a huge amount of data is transferred through the network in vain, because only a small percent of fetched documents will turn out to be useful. The logical improvement is construction of mobile agents that would browse through the network and perform the search locally, on the remote servers, transferring only the needed documents and data.

Basic Genetic Algorithm

Genetic algorithm [2] is adaptive heuristic search method premised on the evolutionary ideas of natural selection and genetics. The basic concept of Genetic Algorithm (GA) is designed to simulate processes in natural systems necessary for evolution, specifically those that follow the principles of survival of the fittest. It is generally used in situations where the search space is relatively large and cannot be traversed efficiently by classical search methods. This is mostly the case with problems whose solution requires evaluation and equilibration of many apparently unrelated variables. As such they represent an intelligent exploitation of a random search space within a defined search space to solve a problem. Algorithm performs the following steps:

1. Generate an initial population , randomly or heuristically.

2. Compute and save the fitness for each individual in the current population.

3. Define selection probability for each individual so that it is proportional to its fitness.

4. Generate the next current population by probabilistically selecting the individuals from the previous current population, in order to produce offspring via genetic operators.

5. Repeat step 2 until a satisfactory solution is obtained.

Flowchart of a basic genetic algorithm is given in Figure 1.

[image: image1.wmf])

(

#

)

(

#

Y

X

Y

X

JS

links

U

I

=

[image: image21.wmf]0.1

0.1

0.9

0.6

0.7

0.4

2.

3.

0.

3

0.5

0.3

1.

Input documents

Potential offsprings

Output documents

Iteration number

0-1

Jaccard's score

1.

[image: image22.wmf]Running time as a function of generation size

-1

0

1

2

3

4

5

6

0

50

100

150

200

250

300

Generation size

Running time of the application

Static implementation

Mobile implementation

[image: image23.png]MEIE

It et nput e Nt o autaits
51021 25 yur-SUnchineleuey i Hum [0
Je 155 2l nelaindec ! =
galh ofthg ac yu-nelandec — o mutton

galeb stfbg ac yui-ebiiindext htm

0~ Spatial mutation
5 - Datahase mutation

Topics.

¥ comments

pravosiaviie

o2 oo |

Frogram flow Result set

o2 com-STevemTochure BT |
D it ¢ yur-nelaAbstract il

el ity ac yul-nelaPaper !

9l ity ac yur-ebidiplhec hm

Weh s mu scul-punchindscil

Wt pop 0 33 dd-anabelaiemo i
yalh ity acyul-sbidoKiaha i
e ——
o comiriiindex !

i loa comy-stevemochure il

i o comi-nliGASOR i

> piKenU-p)=0.0

o

Medium Jaceard's Score

> jsLinks=0.0 0.03870300751673699
d | _>l_‘ KN

8 Command Prompt - o.. | [Mictosolt PawerPoint -..| [3] Result of the Search -.. [& Tropical

g start| B gaket

[image: image24.wmf]0.1

0.1

0.9

0.6

0.7

0.4

2.

3.

0.

3

0.5

0.3

1.

Input documents

Potential offsprings

Output documents

Iteration number

0-1

Jaccard's score

1.

[image: image25.wmf]Running time as a function of generation size

-1

0

1

2

3

4

5

6

0

50

100

150

200

250

300

Generation size

Running time of the application

Static implementation

Mobile implementation

Figure 1: Flowchart of a genetic algorithm

As an initialization step, genetic algorithm generates randomly a set of solutions to a problem (a population of genomes). Then it enters a cycle where fitness values for all solutions in a current population are calculated, individuals for mating pool are selected (using the operator of reproduction), and after performing crossover and mutation on genomes in the mating pool, offspring are inserted into a population and some old solutions are discarded. Thus a new generation is obtained and the process begins again.

Genetic algorithm stops after the stopping criteria are met, i.e. the "perfect" solution is recognized, or the number of generations has reached its maximum value [1] [2].

The first step of a genetic algorithm is to define a search space and describe a complete solution of a problem in the form of a data structure that can be processed by a computer. Strings and trees are generally used, but any other representation could be equally eligible, provided that the following steps can be accomplished, too. This solution is referred to as genome or individual.

The second step is to define a convenient evaluation function (fitness function) whose task is to determine what solutions are better than others. One approach, when meeting diverse requests, is to add a certain value for every request met and substract another value for every rule violated. For instance, in a class scheduling problem, genetic algorithm can add 5 points for every solution that has Mr. Jones lecturing only in the afternoon and substract 10 for any one that has two lecturers teaching in the same classroom at the same time. Of course, many problems require a specific definition of the fitness function which works best in that case.

The third step in the creation of a genetic algorithm is to define reproduction, crossover, and mutation operators that should transform the current generation into the next one. Reproduction can be generalized. Namely, for every problem one can pick out individuals for mating randomly, or according to their fitness function (only few of the best are allowed to mate). The harder part is to define crossover and mutation operators.

These operators depend strongly on the problem representation and require thorough investigation, plus a lot of experimenting to become truly efficient. Crossover generates a new offspring by combining genetic material from two parents. It incarnates the assumption that the solution which has a high fitness value ows it to a combination of its genes. Combining good genetic material from two individuals, better solutions can be obtained. Mutation introduces some randomness into population. Using only a crossover operator is a highly unwise approach, since it might lead to a situation when one individual (in most cases only slightly better than others) dominates the population and the algorithm "gets stuck" with an averagely good solution, and no way to improve it by examining other alternatives. Mutation randomly changes some genes in an individual, introducing diversity into population and exploring a larger search space. Nevertheless, a high rate of mutation can bring oscillations in the search, causing the algorithm to drift away from good solutions and to examine worse ones, thus converging more slowly and unpredictably.

The fourth step is to define stopping criteria. Algorithm can either stop after it has produced a definite number of generations, or when the improvement in average fitness over two generations is below a threshold. The second approach is better, yet the goal might be hard to reach, so the first one is more resonable. Having done all this, one can write a code for a program performing the search (which is fairly simple at this point).

The GA strength comes from the implicitly parallel search of the solution space that it performs via a population of candidate solutions and this population is manipulated in the simulation.

A fitness function is used to evaluate individuals, and reproductive success varies with fitness. An effective GA representation (i.e., converting a problem domain into genes) and meaningful fitness evaluation are the keys of the success in GA applications.

Although this mechanism seems "too good to be true" it gives excellent results, when compared to other approaches, regarding the time spent in search and quality of the solutions found.

Genetic Algorithms and Internet

Basic idea in customizing Internet search is construction of an intelligent agent - a program that accepts a number of user-supplied documents and finds documents most similar to them on Internet [3]. Genetic algorithm imposes itself as "a right tool for the job" since it can process many documents in parallel, evaluate them according to their similarity to the supplied ones, and generate a result in the form of a group of documents found.

Intelligent agent for the Internet search performs the following steps:

1. Processes a set of URLs given to it by a user, and extracts keywords, if necessary for evaluation.

2. Selects all links from the input set and fetches the corresponding WWW presentations; the resulting set represents the first generation.

3. Evaluates the fitness functions for all elements of the set.

4. Repeatedly performs reproduction, crossover, and mutation, and thus transforms the current generation into the next one.

There are several issues of importance that have to be considered when designing a genetic algorithm for intelligent Internet search. These are:

1. Representation of genomes

2. Definition of the crossover operator

3. Selection of the degree of crossover

4. Definition of the mutation operator

5. Definition of the fitness function

6. Generation of the output set

Each of the issues given is described next, in the form of a classification of possible ways to implement the issue. For each of the issues, two pictures are presented: a classification of possible approaches regarding that issue and the most frequently used implementation.

 First issue: Representation of genomes

First issue to be discussed is how one can encode possible solutions. In this case, one solution is URL, the address of an Internet document. The aim is to create a result in the form of a list or an array of those documents, and that average fitness of this set be the highest possible. Figure 2 gives the possible representation approaches.

Figure 2: A taxonomy of representation of genomes
1. String representation

String representation seems to be a natural choice since URL is already string-encoded. However, in this case, there is only one gene in a genome, and classical crossover and mutation cannot be performed. Therefore, a new definition of the crossover and mutation operators is needed that would be applicable in this environment. Nevertheless, redefinition of genetic operators seems to be the only reasonable thing to do, since classical crossover and mutation can transform genetic algorithm's search into a "random walk" through the search space. This issue is discussed later in more detail.

Figure 3: The most frequent approach regarding the representation of genomes: String representation. URL is represented as a string, terminated by an End-Of-String character.

2. Array of strings representation

Each URL contains several fields that have different meanings, so it is convenient to represent it as an array or list of these fields, that are string-encoded.

First, there is a name of the Internet protocol, that can be http or ftp. Only the URLs starting with "http" are of interest to us. Therefore, the agent should take into consideration only the documents that these URLs point to.

Second, there is a server address consisting also of several fields: net name (www, usenet, etc.), server name, and additional information concerning the type of organization that the server belongs to (com for commercial organizations, org for noncommercial ones, edu for universities and schools, and so on). In some cases, this field can contain specification of the city and country the server is located in.

The third, and maybe the most important part of the address is the string that gives the path from the server root to a particular document.

All of these fields must be variable in length so solution can be represented in the form of an array of variable-length strings. Mutation and crossover operators can be implemented more easily in this case than it was possible with the string representation, since there are several genes in a genome that can be crossed or mutated. Either classical or user-defined crossover and mutation can be performed.

3. Numerical representation

Since every Internet address up to the document path is number-encoded, genetic algorithm can use this representation in order to perform classical crossover and mutation. However, this is not a promising approach since documents similar to one another seldom reside on adresses that have much in common, so genetic algorithm would actually perform a random search. Moreover, many of the addresses generated may not exist at all, what places more overhead than can be tolerated. Numerical representation can be either left integer encoded or transformed into a bit-string representation.

Second issue: Definition of the crossover operator

Crossover operator is used to produce a new offspring by combining genetic material from two parents, each one characterized with a high fitness function. The idea is to force out the domination of good genes in the future populations. Figure 4 gives the possible definitions of the crossover operator.

Figure 4: A taxonomy of the crossover operator

1. Classical crossover
Classical crossover can be performed only if URLs are encoded as array of strings or numerically, since it requires that individual contains more than one gene.

It is performed by combining different fields of an address. This approach would, in most cases, produce URLs that do not exist on Internet. For example, combining www.msu.edu with www.novagenetica.com could result in www.msu.com or in www.novagenetica.edu. Neither of these is a valid Internet address. Obviously this technique is hardly better than a random search, and is not a wise choice.

2. Parent crossover
Parent crossover is performed by picking out parents from the mating pool and choosing a constant number of their links as offspring, without any evaluation of those links. This approach is easy to conduct; however, it could result in many non-relevant documents being picked out for the next generation, since one document can contain links to many sites that are not related to the user's subject of interest.

3. Link crossover
Link crossover can, if carefully performed, produce more meaningful results than classical crossover. The idea is to examine links from the documents in the mating pool and pick those ones that are the best for the next generation. This evaluation of the links could be done in two ways: overlapping links and link pre-evaluation.
3.1. Overlapping links
The links of the parent documents are being compared to the links of the input documents, and only those ones that they have in common are selected as offspring. This technique might not be the best one (it is always possible that the fittest document contains links that have nothing to do with the links of input documents), but it is easily conducted. Moreover, it is a common practice on Internet that documents contain links to related sites, so this approach could score high in most cases.

3.2. Link pre-evaluation

Computation of the fitness function can be performed on the documents that parent links refer to, and the best ones can be picked out for the next generation. Since this computation must be done sooner or later it places a small overhead on the program (because of the evaluation of the documents that will not be picked out for the next generation), but gives good results. However, this approach could be time-consuming in the case when the documents in the mating pool contain many links, since genetic algorithm must wait for all documents that those links refer to, to be fetched and evaluated in order to proceed with its work.

Figure 5: The most frequent approach regarding the crossover operator: Link pre-evaluation. Numbers next to the nodes represent normalized values of their fitness functions. Offspring with the greatest values are selected for the next generation.

Third issue: Selection of the degree of crossover

There are two different approaches regarding crossover and insertion of offspring into the next generation. Figure 6 gives possible approaches concerning the degree of crossover.

Figure 6: A taxonomy of the degree of crossover
1. Limited crossover
Only a fixed number of offspring can be produced from each parent couple. This could result in rejection of documents that have higher fitness values than offspring of other nodes but are ranked less than second among offspring documents of their parent node.

2. Unlimited crossover
Genetic algorithm can rank the documents from the mating pool and all documents that parent links refer to together, according to the values of their fitness function. Then, it can pick from this set those individuals that can be forwarded to the next generation. Overall fitness would be better and there is no risk of losing some good solutions.

Figure 7: The most frequent approach regarding the selection of the degree of crossover: Unlimited crossover. Parents and all offspring are ranked according to their fitness function values and the best among them are selected. Thus, instead of picking out nodes with the fitness function values of 0,4, 0,5, 0,8, 0,9, as would be done using limited crossover, only the best solutions are chosen for the next generation.

Fourth issue: Definition of the mutation operator

Mutation is used to introduce some randomness in the population and thus slow down the convergence and cover more of the search space. Figure 8 gives the possible definitions of the mutation operator.

1. Generational mutation

Generational mutation is performed by generating a URL randomly. It is easily conducted, but has no significance since high percent of URLs generated in this way would not exist at all. So, conclusion is that URLs for mutation must be picked out from some set of existant addresses, such as database.

Figure 8: A taxonomy of the mutation operator
2. Selective mutation

Selective mutation is performed by selecting URLs from a set of existing URLs. It can be either DB-based or semantic.

2.1. DB-based

DB-based mutation leans heavily on the existence of a database that contains URLs that are somehow sorted. Few of them are picked out and inserted into the population. The URLs can be:

 unsorted - genetic algorithm picks any one of them. This approach usually does not promise good performance.

 topic sorted - there is a field that says to which topic URL belongs, i.e. entertainment, politics, business, and genetic algorithm chooses only from the set of URLs that belong to the same topic as the input URLs. This approach is a bit limited since one document can cover several topics but should produce reasonably good scores.

Figure 9: The most frequent approach regarding the definition of the mutation operator: Topic-sorted DB-based mutation. Offspring are selected from the set of the documents in a database that are related to a certain topic.

indexed - there is a database that contains all words that appear in documents with a certain frequency and also links to documents in which they appear. Genetic algorithm writes a query to a database with keywords from input documents and picks out URLs for mutation from the resulting set. This requires some effort for implementation and updating the database but promises good scoring. All one has to worry about is finding a compromise between database size and quality of search results.

2.2. Semantic
Semantic techniques use some logical reasoning in order to produce URLs for mutation.

2.2.1. Spatial locality mutation

If genetic algorithm finds a document of a high fitness value on a particular site there is a strong possibility that it can find similar documents somewhere on the same server or on the same local network [4]. This is because many people that have accounts on the same server or network usually have similar interests (which is most likely for academic networks). This approach is a bit hard to conduct since genetic algorithm has to either examine all sites on a server/net (which is time consuming) or randomly pick a subset of them.

2.2.2. Temporal locality mutation

A database is maintained of a huge number of documents that were in the result set, for every search made. Genetic algorithm keeps scoring them on how frequently they appear in that set [4]. Those with high frequency promise to give good performance in the future too, so genetic algorithm inserts them in the population, thus performing the mutation. This will yield good results for usual queries (from the field that many users are interested in) but will do poor for less popular ones.

2.2.3. Type locality mutation

This mutation is based on a type of the site the input documents are located on. If it is, say an edu site then there is a strong probability that some other sites with same sufix have similar documents. A database is maintained containing types of sites and a set of URLs referencing those sites and genetic algorithm chooses the candidates for mutation from this set.

Although last two types of mutation deal with databases, they involve logical reasoning and semantics consideration in picking out URLs for mutation, and therefore are not classified as DB-based.

Fifth issue: Definition of the fitness function

In order to evaluate fitness of a document genetic algorithm must go through it and examine its contents. Figure 10 gives several possible definitions of the fitness function.

1. Simple keyword evaluation

Occurences of keywords (selected at the beginning from input files) in the document are counted. Then genetic algorithm can simply add those numbers and add a certain value when two or more keywords appear in the document (so it ranks it higher than those documents that contain only one keyword). It can also add a value for occurences of keywords in a title or hyperlinks. This method, though rough, can produce fairly good results with minimum time spent for evaluation.

Figure 10: A taxonomy of the fitness function
2. Jaccard's score
Jaccard's score [3] is computed based on links and indexing of pages as follows:

Jaccard's score from links: Given two homepages x and y and their links, X=x1 , x2 ,…, xm and Y= y1 , y2 ,…, yn, the Jaccard's score between x and y based on links is computed as follows:

[image: image26.bmp]
Jaccard's score from indexing: Given a set of homepages, the terms in these homepages are identified (keywords). The term frequency and the homepages frequency are then computed. Term frequency, tfxj, represents the number of occurences of term j in homepage x. Homepage frequency, dfj, represents the number of homepages in a collection of N homepages in which term j occures. The combined weight of term j in homepage x, dxj, is computed as follows:

[image: image2.wmf])

*

(

*

j

j

xj

xj

w

df

N

log

tf

d

=

where wj represents the number of words in term j, and N represents the total number of homepages. The Jaccard's score between homepages x and y based on indexing is then computed as follows:

[image: image3.wmf]å

å

å

å

=

=

=

=

+

+

=

L

j

yj

xj

L

j

yj

L

j

xj

L

j

yj

xj

indexing

d

d

d

d

d

d

y

x

JS

1

1

2

1

2

1

)

,

(

where L is the total number of terms. Fitness function for homepage hi is then computed as follows:

[image: image4.wmf])

,

(

1

)

(

1

i

j

N

j

links

i

links

h

input

JS

N

h

JS

å

=

=

[image: image5.wmf])

,

(

1

)

(

1

i

j

N

j

indexing

i

indexing

h

input

JS

N

h

JS

å

=

=

Fitness function is defined as:

[image: image6.wmf]))

(

)

(

(

2

1

)

(

i

indexing

i

links

i

h

JS

h

JS

h

JS

+

=

Although computation of this fitness function can be time-consuming for a big population it gives excellent results concerning quality of homepages retrieved.

Figure 11: The most frequent approach regarding the fitness function: Jaccard’s score. The figure illustrates Best First Search performed using Jaccard’s score as the evaluation function.

3. Link evaluation

Documents can be evaluated according to the number of links that belong to the set of links of input documents. This narrows the search space but can produce good results in most cases and is easily implemented.

Sixth issue: Generation of the output set

Resulting output set can be either interactively generated or post-generated.

1. Interactive generation

From each generation of individuals one or few of them, that have highest fitness values are picked out, and inserted into the result set. Thus, solutions from earlier generations that are inserted in the output set disqualify later ones that are just below the line for insertion. Good thing is that the user is not required to wait for the end of the search, but can view documents found so far, while the search is performed. Sometimes it is possible even to modify some parameters during the search, i.e. add new input documents, or new keywords.

2. Post-generation

The final population, one that represents the last generation, is declared to be the result set. The quality of the documents found is definitely better, and overall fitness is higher than for interactive generation, but user cannot view documents and make modifications until the end of the search.

Figure 12: The most frequent approach regarding the generation of the output set: Interactive generation. Best individuals from each generation are selected for the output set.

Problem statement: Making of a package

While it is undoubtful that there are numerous search engines that are designed to locate and retrieve Internet documents that would best meet user's requests, many of them operate in a non-user-friendly manner and offer, as their result, a huge number of files, out of which many are completely unrelated to what the user originally attempted to find. This is mostly the case with indexing engines, that have great potential for finding almost any desired document, but have also poor evaluation functions. It is hard for a user to form a query because a small number of keywords, submitted as input, will result in too many documents retrieved, and too many keywords will produce a small result set. Due to the simple evaluation function documents placed on the top of the result list are often less acceptable than lower ones. If the list is long, one might never reach those better documents, because there is a strong probability that the user gets bored after "clicking" on several hundred links and gives up.

The links approach has usually better evaluation function and this approach is user-friendly, since user only has to submit documents and not keywords. It explores a smaller search space, but with a greater efficiency. Of course, this approach could be greatly limited if one tries to follow only those links that are contained in the user's documents, so external help is needed, in the form of a database of links or some sort of indexing. The major advantage is that it is not necessary to keep a large database of indexes and the search remains roughly within the area of the user's interest.

We have decided to follow the second approach and, since we wanted to explore how different mutation strategies can effect the search efficiency, we have decided to develop a set of software packages that would perform Internet search using genetic algorithms as decision making tools.

These packages are developed using the LEGO approach. That is: they are able to operate as stand-alone applications, but are also easily interfaced with one another to combine different search methods.

Existing solution

As already indicated, paper [4] is describing the experiment with genetic search on the Internet. This experiment was conducted at the University of Hong Kong and the following steps were performed:

1. A set of input documents, submitted by the user, was indexed using the SWISH package for indexing HTML documents, and keywords were extracted. The current set is initialized with the input set.

2. Documents that the hyperlinks from the current set refer to were fetched and their similarity to the input documents evaluated using Jaccard's score as the evaluation function. The best ones were injected into the current set.

3. From the prepared database of topic-sorted URLs, a number of URLs was selected randomly (under user selected category) and injected into the current set.

4. The best document from the current set was injected into the output set and documents that its hyperlinks point to were injected into the current set.

5. Steps 2, 3, and 4 were repeated until the predefined size of the output set was attained, or until current set was emptied.

Our solution

In our project, a set of software packages was developed for experimenting in genetic search on the Internet. These packages are compatible and easily interfaced with one another to support reconfigurable nature of the project. The Figure 12 shows the block diagram of our project:

Figure 12: Block diagram of the static implementation of the project. Continuous lines show the flow of data, and dashed lines show the control flow. Rectangles represent the applications and ovals the input and output data structures.

Spider is the application for fetching Internet documents, starting from one input URL, up to the certain depth, specified by the user. Documents are stored onto the local disk in the folder structure resembling the one on the remote server. A separate folder is created for each remote server and hyperlinks in the stored documents are changed, so that they point to the documents on the local disk.

Agent is the application that performs Best First Search. It starts from the set of input documents, and by following their links and evaluating Jaccard's Score of the documents found, finds Internet pages most similar to them.

Generator is the application that generates and updates the database of URLs that are classified according to the topic they cover. This database is used for mutation, when repeating the Hong Kong experiment.

Topic is the application that performs mutation as described in [4] by selecting URLs from the previously generated database and injecting them into the current set and thus performing, so called "topic mutation".
Space is the application that performs mutation using spatial locality. Document is a spatially local to the other document if they are located on the same server or the same local network. If genetic algorithm finds a document of a high fitness value on a particular site there is a strong possibility that it can find similar documents somewhere on the same local network. This is because many people that have accounts on the same server or network usually have similar interests (which is most likely for academic networks). This approach is a bit hard to conduct since genetic algorithm has to either examine all sites on a server/net (which is time consuming) or randomly pick a subset of them.

Time is the application that performs mutation using temporal locality. A database of URLs that appeared in the output set of the previously performed searches is maintained, along with the counter for each URL. This counter shows the number of times that every particular URL occurred in the output set of any search. Mutation is performed by picking from this database a number of URLs with the highest counter value and inserting them into the current set.

Control Program is the control layer that manages program interfacing and execution. It is possible to select mutation rate and type (topic, spatial, temporal) and follow the progress of search by examining average Jaccard's score of the documents in the output set.

Details of our work

Table 1 that gives an overview of input and output parameters of the aforementioned applications.

program
input
output

Spider
one URL
folder structure on the local disk

Agent
a set of URLs
a set of URLs

Generator
topic selection
database of URLs

Topic
a set of URLs
a set of URLs

Space
a set of URLs
a set of URLs

Time
a set of URLs
a set of URLs

Table 1. An overview of input and output parameters.

Spider takes as input one URL, fetches the corresponding document and follows the links contained in it, fetches all documents (HTML files, pictures, animations, etc.) they point to, up to a certain depth specified by the user. These documents are stored on the local disk in the folder structure that is identical to the one on the remote server, and all links are changed to point to the documents on the disk.

Agent takes as input a set of URLs, calls the Spider application for every one of them, with a fixed depth of 1 (only the document that the URL points to) and the fetched documents form the input set or generation. It extracts keywords from the documents in the set and stores them in the convenient structure. It also extracts hyperlinks from the input documents. Program then proceeds further and enters a loop inside which the following steps are performed:

1. Spider is called with extracted hyperlinks and the depth of one. Thus the current set is formed.

2. Fetched documents are evaluated using the Jaccard's score function and earlier extracted keywords, and the one that is most similar to the input documents (that has the highest Jaccard's score) is inserted into the output set.

3. The documents that hyperlinks of the best document point to are fetched using Spider application and inserted into the current set.

4. Steps 1, 2, and 3 are performed until the desired number of output documents is reached or until the current set is empty.

Generator takes as input the desired topic, calls the Yahoo engine and submits a query looking for all documents covering the specified topic. It extracts URLs from the Yahoo's result page, and fills the database TopData with them. This database has only two fields: URL and topic. Topic field is filled with the input parameter of the application.

Topic takes as input the current set from the Agent application and a topic that user selects among those existing in the database TopData. It performs mutation on the current set in the following way: it selects from the database TopData all documents that belong to the topic specified, randomly picks the specified number of them and injects them into the current set.

Space takes as input the current set from the Agent application and searches for the Internet documents from the local network, on which the best ranked document is located. It does not examine all existing documents (for it would be too much overhead), but picks randomly a subset of them, and evaluates them by calculating Jaccard's score. The best ones are injected into the current set.

Time takes as input the current set from the Agent application and injects into it those URLs from the database NetData that appeared with the greatest frequency in the output set of previous searches. This database has three fields: topic, URL and count number, and is updated at the end of the run-time of the main application - Control Program in the following way:

1. Each URL from the output set is searched for in NetData.
2. If it is found, its count number is incremented.

3. If it is not found, it is inserted into NetData with count number equal to 1.

4. In the case of overflow (limit size of NetData is reached) documents with the lowest count number are deleted from database and thus free space is gained.

Control Program takes as input a set of URLs, desired number of output documents and the mutation type and rate. If mutation rate for the certain type is greater than zero, then this mutation type is performed: If mutation rate is zero for all three mutation types (topic, spatial, temporal) Best First Search is performed. Any combination of topic, spatial, and temporal mutation is possible. If topic mutation is selected, user is asked to select the desired topic. Control Program then proceeds and calls the Agent, interrupting it after each iteration to perform the selected way of mutation. After it, the processing continues.

An Experiment with various mutation types

In the experiment that we have performed, we have measured average Jaccard's score for the documents in the output set, while changing the type and rate of mutation. The input set was fixed and consisted of three files. The desired number of output documents was fixed at 10. The database used for topic mutation was filled at the compile time in order to achieve best simulation results. The input window of the program used for performing the experiment is shown in Figure 13.

We measured average Jaccard's score for following cases:

· Search without mutation (Best First Search)

· Search with topic mutation

· Search with topic and spatial mutation

· Search with topic and temporal mutation

· Search with all three types of mutation

Figure 13: The application window

In all cases in which mutation was employed, the rate of mutation (number of URLs inserted per iteration) was changed from 0 to 30, with the step of one. In the case when the Best First Search was performed, the resulting Jaccard’s score was 0.038252.

The simulation results for the experiment when only topic mutation was performed are shown in Figure 14. As it can be seen from the graph, topic mutation significantly increases the quality of the pages found using our search tool. This increase is getting smaller as the mutation rate is increased but still monotonically increases with the mutation rate. The conclusion is that the mutation should be performed in the search, and to the certain extent, to gain satisfactory results. The mutation rate of 10 already gives the quality of pages found 300% better than when no mutation is used. However, the mutation rate of 20 gives the quality of pages only 30% better than when mutation of rate 10 is performed.

[image: image7.png]0z

o |

o

1005 s preacer

008 |

o0

ooz |

® @ om oW
Mutstion rste

0

 Figure 14: The simulation results for topic mutation.

Our next step was to define if any additional gain in the quality of pages can be achieved by employing spatial and temporal mutation. The simulation results for employing temporal and spatial mutation in addition to topic mutation are shown in Figure 15.

[image: image8.png]Jaccard's score

03

0.25

024

0.15

0.1

008
{

—— Topic mutation
—=— Topic and temporal mutation

—4— Topic and spatial mutation

10 20
Mutation rate

a0

Figure 15: The simulation results for temporal and spatial mutation combined with topic mutation.

As it can be seen from the graph that spatial mutation brings in only sporadic increase. In same cases we get even worse results than with topic mutation. Temporal mutation brings in the constant increase in the quality of pages found.

In the next experiment we employed all three types of mutation and the results are shown in Figure 16.

[image: image9.png]Jaccard's score

03

0.25

.-»";I.'“fw

02

0.15

0.1

008
¥

—+— Topic mutation
—=— Topic and temporal mutation
—&— Topic and spatial mutation
- Allthree types of mutation

10 20
Mutation rate

a0

Figure 16: The simulation results for topic, spatial, and temporal mutation combined

The effect of employing all three types of mutation is the constant increase in the quality of pages found. This increase is greater than when any of these mutation types are performed separately, or in combination of two types.

Reimplementation in the mobile domain

As the main part of the work in the application is done through the fetching and examining of Internet documents, often times in vain, the logical solution of a problem is to construct mobile agents that would transfer themselves onto the home servers and examine documents at remote sites, transferring back only those ones that are likely to be useful. Parallel genetic algorithm would be used. This approach would achieve significant gain in time and disk space, especially in the module that calculates Jaccard's score since only these numbers could be sent back through the network, instead of all documents that are potential candidates for the result set. If we calculate program running time in a form of equation, we get:

[image: image10.wmf]o

transfer

process

i

transfer

data

t

t

data

t

t

*

*

+

+

=

where:

·
[image: image11.wmf]transfer

t

is time needed to transfer one byte
through the network

·
[image: image12.wmf]i

data

is the amount of input data
for the application obtained from the network

·
[image: image13.wmf]o

data

is the amount of output data
for the application obtained from the network

·
[image: image14.wmf]process

t

is time needed for processing of data

If a static method is used for Jaccard's score evaluation:

·
[image: image15.wmf]i

data

is very large:

for the generation size of 100 documents,
50KB each, it amounts to 5MB.

·
[image: image16.wmf]o

data

is zero

If mobile agent is used for Jaccard's score evaluation:

·
[image: image17.wmf]i

data

is zero

·
[image: image18.wmf]o

data

is a set of numbers:

for the generation size of 100 documents,
4B for a floating point number, it amounts to 400B.

At Figure 17 are given graphs showing time needed to run the application for different generation sizes. Term
[image: image19.wmf]transfer

t

 is estimated to be 5ms, and
[image: image20.wmf]process

t

is 0,1ms*GS. The GS is generation size.

Figure 17: Estimated running time of the application as a function of generation size, for static and mobile implementation. Time is given on the logarithmic scale.
As it can be seen, gain in time is enormous, and one can also expect the corresponding lowering of the network traffic because significantly fewer amounts of data are transferred in the case of mobile implementation. Figure 18 gives the block diagram of our program in the mobile implementation.

Figure 18: Block diagram of the mobile implementation of the project. Continuous lines show the flow of data, and dashed lines show the control flow.

As it can be seen from Figure 17, time critical parts of the application should be realized as mobile agents.

JC is the agent that browses through the network and performs Jaccard's score evaluation, sending back only the best URLs and their Jaccard's score.

SL is the agent that browses through the network neighborhood of the highest ranked documents and performs the Jaccard's score evaluation, sending back only the best URLs and their Jaccard's score. The rest of the applications process their data as usual.

About complexity

So far, Spider, Agent, Generator, and Topic applications are completely realized and tested and consist of 24KB, 58KB, 40KB, and 64KB lines of code, respectively. Other applications do not exceed 80KB lines of code per each application.

This project was started at August 1997 and was fully accomplished and ready for testing, in static version, by August 1998.

However, since the LEGO approach of our work is well suited for mobile implementation, we are eager to realize this project in a mobile environment and observe the expected gain in performance. On the other hand, we expect that complexity of the applications will not grow more than 50%, as a consequence of this improvement.

Conclusion

Because of the fast growth of the quantity and variety of Internet sites, finding the information needed as quickly and thoroughly as possible becomes a most important issue for research. There are two approaches to Internet search: indexed search and design of intelligent agents. Genetic algorithm is a search method that can be used in the design of intelligent agents. However, incorporating the knowledge about spatial and temporal locality, and making these agents mobile, can improve the performance of the application and reduce the network traffic.

Acknowledgements

Authors would like to express their gratitude to the members of the EBI group at the Department of Computer Engineering, School of Electrical Engineering, University of Belgrade, for their assistance, suggestions, and support in writing this paper. Also, the authors are thankful to Dr Dejan Milojičić for his outstanding discussions during his recent lecture at our department. A version of this paper was presented at [10] and further details about the applications and the executable code can be found at the following www locations: http://galeb.etf.bg.ac.yu/~ebi and http://galeb.etf.bg.ac.yu/~vm

References

[1] Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Massachusetts, USA 1989.

[2] Milojičić S., Musliner D., Shroeder-Preikschat W "Agents: Mobility and communication, " Proceedings of the Thirty-First Annual Hawaii International Conference on System Sciences, Maui, Hawaii, USA, January 1998.

[3] Chen, H., Chung, Y., Ramsey, M., Yang, C., Ma, P., Yen, J., "Intelligent Spider for Internet Searching, " Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences, Maui, Hawaii, USA, January 1997.

[4] Milutinovic, V., Kraus, L., Mirkovic, J., et al. "A Software Package for Experimenting in Genetic Search on Internet: Spatial versus Temporal Locality and Static versus Mobile Agents," Notes of the WETICE'98 Conference, Stanford, California, USA, June 1998.

select individuals for the mating pool

initialize the population

perform crossover

perform mutation

insert offspring into the population

the end

stopping criteria satisfied?

no

yes

Spider

Current set

Topic

Space

Time

Output set

classical

link

crossover

operator

parent

overlapping links

link

pre-evaluation

semantic

DB-based

limited

selective

unlimited

degree of crossover

unsorted

mutation

operator

generational

topic

sorted

indexed

spatial locality

temporal locality

type locality

1. population

2. population

link evaluation

fitness function

simple keyword evaluation

Jaccard's score

the output set

3. population

0,3

0,1

NetData

Generator

TopData

http://galeb.etf.bg.ac.yu/~vm/tutorial.html

 EOS

http://\www.altavista.com

 EOS

parents

potential offspring

0,1

0,3

0,9

0,93

0,2

0,8

0,9

selected offspring

parents

offspring

0,1

0,3

0,4

0,5

0,7

0,8

0,9

ranked solutions

0,6

0,2

0,1

0,2

Output set

TopData

Generator

NetData

JC

SL

� EMBED Visio.Drawing.4 ���

selected

offspring

education

http://www.santafe.edu

http://www.etf.bg.ac.yu

http://www.cmu.edu

0,3

http://www.etf.bg.ac.yu

offspring

0,2

0,5

0,85

0,8

0,4

0,7

0,9

0,7

0,4

0,9

0,4

0,5

0,6

0,7

0,8

0,9

� EMBED Excel.Sheet.8 ���

C

O

N

T

R

O

L

P

R

O

G

R

A

M

Agent

Input set

representation of genomes

numerical

array of strings

bit-string encoded

integer encoded

string

Time

Space

Topic

Current set

Input set

Agent

C

O

N

T

R

O

L

L

O

G

I

C

©IEEE TCCA Newsletter, 1999.

_942071570.unknown

_949575699.unknown

_949575810.unknown

_949575994.unknown

_949781975.xls
Chart1

		10		10

		20		20

		30		30

		40		40

		50		50

		60		60

		70		70

		80		80

		90		90

		100		100

		110		110

		120		120

		130		130

		140		140

		150		150

		160		160

		170		170

		180		180

		190		190

		200		200

		210		210

		220		220

		230		230

		240		240

		250		250

		260		260

		270		270

		280		280

		290		290

		300		300

Static implementation

Mobile implementation

Generation size

Running time of the application

Running time as a function of generation size

3.4082416618

-0.6777807053

3.7092716574

-0.3767507096

3.8853629165

-0.2006594505

4.0103016531

-0.0757207139

4.1072116661

0.0211892991

4.1863929122

0.1003705451

4.2533397018

0.1673173347

4.3113316488

0.2253092817

4.3624841712

0.2764618042

4.4082416618

0.3222192947

4.4496343469

0.3636119799

4.4874229078

0.4014005408

4.5221850141

0.436162647

4.5543696974

0.4683473304

4.5843329208

0.4983105538

4.6123616444

0.5263392774

4.6386905831

0.5526682161

4.6635141669

0.5774917998

4.6869952627

0.6009728957

4.7092716574

0.6232492904

4.7304609565

0.6444385895

4.7506643426

0.6646419756

4.7699694978

0.6839471308

4.7884529035

0.7024305364

4.8061816704

0.7201593034

4.8232150097

0.7371926427

4.8396054259

0.7535830589

4.8553996931

0.7693773261

4.8706396597

0.7846172926

4.8853629165

0.7993405495

Sheet1

		10		2560		0.01		0.2		2560.01		0.21		3.4082416618		-0.6777807053

		20		5120		0.02		0.4		5120.02		0.42		3.7092716574		-0.3767507096

		30		7680		0.03		0.6		7680.03		0.63		3.8853629165		-0.2006594505

		40		10240		0.04		0.8		10240.04		0.84		4.0103016531		-0.0757207139

		50		12800		0.05		1		12800.05		1.05		4.1072116661		0.0211892991

		60		15360		0.06		1.2		15360.06		1.26		4.1863929122		0.1003705451

		70		17920		0.07		1.4		17920.07		1.47		4.2533397018		0.1673173347

		80		20480		0.08		1.6		20480.08		1.68		4.3113316488		0.2253092817

		90		23040		0.09		1.8		23040.09		1.89		4.3624841712		0.2764618042

		100		25600		0.1		2		25600.1		2.1		4.4082416618		0.3222192947

		110		28160		0.11		2.2		28160.11		2.31		4.4496343469		0.3636119799

		120		30720		0.12		2.4		30720.12		2.52		4.4874229078		0.4014005408

		130		33280		0.13		2.6		33280.13		2.73		4.5221850141		0.436162647

		140		35840		0.14		2.8		35840.14		2.94		4.5543696974		0.4683473304

		150		38400		0.15		3		38400.15		3.15		4.5843329208		0.4983105538

		160		40960		0.16		3.2		40960.16		3.36		4.6123616444		0.5263392774

		170		43520		0.17		3.4		43520.17		3.57		4.6386905831		0.5526682161

		180		46080		0.18		3.6		46080.18		3.78		4.6635141669		0.5774917998

		190		48640		0.19		3.8		48640.19		3.99		4.6869952627		0.6009728957

		200		51200		0.2		4		51200.2		4.2		4.7092716574		0.6232492904

		210		53760		0.21		4.2		53760.21		4.41		4.7304609565		0.6444385895

		220		56320		0.22		4.4		56320.22		4.62		4.7506643426		0.6646419756

		230		58880		0.23		4.6		58880.23		4.83		4.7699694978		0.6839471308

		240		61440		0.24		4.8		61440.24		5.04		4.7884529035		0.7024305364

		250		64000		0.25		5		64000.25		5.25		4.8061816704		0.7201593034

		260		66560		0.26		5.2		66560.26		5.46		4.8232150097		0.7371926427

		270		69120		0.27		5.4		69120.27		5.67		4.8396054259		0.7535830589

		280		71680		0.28		5.6		71680.28		5.88		4.8553996931		0.7693773261

		290		74240		0.29		5.8		74240.29		6.09		4.8706396597		0.7846172926

		300		76800		0.3		6		76800.3		6.3		4.8853629165		0.7993405495

Sheet2

		

Sheet3

		

_949575801.unknown

_942496751.vsd

_949575660.unknown

_942071610.unknown

_941619602.unknown

_941619805.unknown

_941619889.unknown

_941619550.unknown

