
REST web services

Representational State Transfer

Author: Nemanja Kojic



What is REST?

• Representational State Transfer (ReST)
• Relies on stateless, client-server, cacheable 

communication protocol
• It is NOT a standard
• It is an architecture style for designing networked 

applications
• In almost all cases HTTP protocol is used

(instead of complex CORBA, RPC or SOAP)
• HTTP can be viewed as REST-based architecture, as 

well
• HTTP used to post, read and delete data



What is REST? (cont.)



REST as Lightweight Web Services

• It is a programming approach 
• REST is a lightweight alternative to complex 

mechanisms like:
– RPC (Remote Procedure Call)
– Web services (SOAP, WSDL,…)

• REST service is: 
– Platform independent
– Langugage independent
– Standards based (runs on top of HTTP)
– Can easily be used in presence of firewalls.



REST as Lightweight Web Services

• REST offers no:

– Built-in security features

– Encryption 

– Session management

– QoS quaranties

• Security features can be added easily:

– Security: user/pass tokens

– Encryption: HTTPS (secure sockets)



REST as Lightweight Web Services

• Cookies is not part of good REST design

• REST operations are self-contained 

• Each request carries with it (Transfers) all the 
information (State) that the server needs to 
complete it



REST vs. SOAP request

SOAP Request

REST Request 
(URL)

SOAP message must be 
assembled properly, and 

it is included as the 
HTTP payload. 

The result may be an 
XML content embodied 
inside a SOAP response 

envelope. 

HTTP Post

HTTP GET

HTTP reply is the raw 
result data, as-is.

URL’s method is called UserDetails, instead of 
GetUserDetails. It is a common convention in 
REST design to use nouns rather than verbs to 

denote simple resources.



REST vs. SOAP

• SOAP-based web 
Services are often 
implemented with 
libraries that maintain 
SOAP/HTTP requests

– Create and send the 
SOAP request

– Parse the SOAP response

• With REST, only a 
simple network 
connection is used

• Still there are some 
useful libraries that 
simplify the REST 
things.



More complex REST requests

• REST can easily handle more complex requests
(including multiple parameters)

• For passing long parameters, 
or even binary ones, 
one can use HTTP POST requests



The REST rules

• GET requests for read-only queries
(SHOULD NOT change the state)

• POST requests for Create/Update/Delete

• POST can also be used for read-only queries
(large parameters)



REST and XML

• REST services may use XML in their responses

• REST requests rarely use XML

– request parameters are simple
(no need for XML structuring)

• XML response SHOULD BE verified



REST Response Format

• Response is often an XML file
– XML is easy to expand

• REST is not bound only to XML

• REST can also use other formats:
– CSV (Comma Separated Values)

more compact

– JSON (JavaScript Object Notation)
easily parseable by JavaScript clients

• HTML is not acceptable for REST responses!
(except in rare cases, www)

JSON Example



REST Response Example



Real REST Examples

• The Google Glass API (“Mirror API”)
• Twitter REST API

https://dev.twitter.com/docs/api
• Flickr, 

https://www.flickr.com/services/api/
• Amazon, Simple Storage Service 

http://docs.aws.amazon.com/AmazonS3/2006-03-
01/API/APIRest.html

• Atom, restfull variant of RSS
• Tesla Model S (car systems  Android/iOS apps), 

http://docs.timdorr.apiary.io/

https://dev.twitter.com/docs/api
https://www.flickr.com/services/api/
http://docs.aws.amazon.com/AmazonS3/2006-03-01/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/2006-03-01/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/2006-03-01/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/2006-03-01/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/2006-03-01/API/APIRest.html
http://docs.timdorr.apiary.io/


AJAX and REST

• AJAX – Asynchronous JAvaScript and XML

• AJAX makes web pages interactive using JS

• AJAX requests sent as XmlHttpRequest objects

• AJAX response is parsed by JS code

• AJAX follows the REST principles:

– XmlHttpRequest can be viewed as a GET request

– Response is often JSON (popular for REST)



REST Architecture Components

• Resources
– Identified by logical URLs
– Both state and functionality exposed as resources

• A web of resources
– Resources SHOULD NOT be too large and

contain too fine-grained data
– Resources should exploit links to additional data

• Client-Server
– in a distributed fashion

• No connection state
– Stateless communication, although server and client can be stateful.

• Cacheable resources
– Protocol (HTTP) must allow caching of resources (with expiration)

• Proxy servers



REST Architecture



REST Design Guidlines

• Don’t use physical URLs.

– NO: http://www.acme.com/p/product003.xml

– YES: http://www.acme.com/p/product/003

• Queries should not return an overload data.

– Provide a paging mechanism with prev/next links

• Make sure the rest response format is well 
documented

– In case of XML, provide a schema or DTD

http://www.acme.com/p/product/003


REST Design Guidlines

• Don’t let clients construct REST URLs.

– Provide clients with complete URLs, instead.

– Include URL with each item. 

– NO: http://www.acme.com/product/PRODUCT_ID

– YES: http://www.acme.com/product/001263

• GET requests should never case a state change.

– Server state should be changed through POST 
requests



Documenting REST Services: WADL

• Web Application Description Language

• Created by Sun Microsystems

• WADL is lightweight

• Easy to understand and write

• It is not as flexible as WSDL

• WSDL can also be used for 
documenting REST services



WADL vs. WSDL

• Often used to describe SOAP-based services

• Flexible in service binding options

– It is possible to send SOAP messages via SMTP!

• It is more complex than WADL 

• Supports all HTTP verbs

• It is acceptable for documenting REST services 



WADL: An example
The description of 

Amazon’s ItemSeach
service

The Complete WADL spec. for Amazon’s web service
http://www.w3.org/Submission/wadl/#x3-35000A.1



WADL: XML Header Section

The XML validation schema.

Namespace declarations.



Using REST in C#

• Issuing HTTP GET request

– Key classes: HttpWebRequest, HttpWebResponse

– URL parameters must be properly encoded (%20), 
use System.Web.HttpUtility.UrlEncode()



Using REST in C# (cont.)

• Issuing HTTP POST requests



References

• Learn Rest: A tutorial, http://rest.elkstein.org/


