
MS Sql Server Indexes

Author: Nemanja Kojic MScEE

1 of 32

Indexing

• Vital for system performance

• Improves query execution performance

• NOT one size fits all – trade offs must be made

• Penalties during INSERT/UPDATE – index
update

• Two types of indexes:

– Clustered Indexes

– NonClustered Indexes

2 of 32

Index example

3 of 32

Non-Clustered Index

• Data in pages in random order

• Logical data order in index

• NonClustered index tree
– Keys in sorted order

– Leaf pages contain pointers to rows in data pages

• Typicaly created on column used in
JOIN, WHERE, ORDER BY

• Good for tables whose values may be
modified frequently

4 of 32

NonClustered Index (cont.)

• MS Sql Server:
CREATE INDEX -> nonClustered by default

• Allowed more than index on a db table

• MS Sql Server 2008:
up to 999 nonClustered indexes per table

5 of 32

Non-Clustered Index example

6 of 32

Non-Clustered Index - summation

• Create index on columns which are:

– Frequently used in search criteria

– Used to JOIN different tables

– Used as foreign key fields

– Of having high selectability

– Used in ORDER BY clause

– Of type XML (primary and secondary indexes)

7 of 32

Clustered Index

• Re-orders data rows to match the index
(rows in sort order on disk)

• Only one clustered index per table!

• Leaf level of the index tree - actual data rows

• Good for
sequential access, and
range selection

8 of 32

Clustered Index (cont.)

• MS Sql Server INSERTS data according to the way
a clustered index was created

• Most often:
PRIMARY KEY => Clustered Index

• Every table SHOULD have clustered index
• w/o clustered index:

records added to the end of the last page
• w/ clustered index:

data added to suitable position dictated by the
index

9 of 32

Clustered Index example

10 of 32

Clustered and Non-Clustered Index
combined

11 of 32

Covering indexes

• Extending functionality of nonCls indexes

• Adding non-key columns to the leaf level

• Index covers more types of queries

• Covering Indexes = Indexes w/ incl. columns

• Great performance benefits

12 of 32

Filtering indexes

• NonClustered index with a record filter

• Covers a subsed of records in a table

• Reduces storage space for index

• Better performance

• Decreased INSERT penalty

13 of 32

Index selectivity and Density

• Selectivity:
number of distinct key values in the table

• PRIMARY KEY, UNIQUE – perfectly selective

• The higher selective Index, the better perform.

• Density:
number of duplicate key values in the table

• Query optimizer: index seek, index scan

14 of 32

Fill factor

• Tuning storage and performance

• Fill factor = % of space for data in leaf pages

• Remainder of the page for future growth

• E.g. Fill factor=80% => 20% page empty

• Reserved space between index rows
(rather than at the of the index)

• Applied on CREATE or REBUILD INDEX

15 of 32

Fill factor - guidelines

• Depends on how data are accessed

• Data inserted at the end of the table =>
FILL FACTOR = 90%-100%

• Data inserted anywhere =>
FILL FACTOR = 60%-80%

• The lower FF, the higher storage for the index

• In general: appropriate FF requires a lot of
testing and probing

16 of 32

Creating indexes – Best Practices

• Keep indexes narrow (one or few columns)
• Clustered index on every table
• Clustered index on a highly selective column
• Clustered index on a column that is never upd.
• Default: clustered index on PRIMARY KEY col.
• Be aware of penalties during INSERT/UPDATE
• Eliminate duplicate indexes.
• Check the default FILL FACTOR
• Non-clustered indexes can be created in different

file groups, which may increase performance

17 of 32

Order of fields on each index?

• Bad order => index is not useful

• Most selective columns go first

• Sql Server knows data distribution only for the
first column!

• Don’t place column from clustered index to a
non-clustered index

18 of 32

EXAMPLES

19 of 32

Table with NO indexes
select * …

20 of 32

Table w/ non-clust. index on LastName
select *

21 of 32

Table w/ clust. index on LastName
select * …

22 of 32

Table w/ non-clust. index on LastName
selecting LastName

23 of 32

Table w/ clust. Index on LastName
selecting LastName

24 of 32

Table w/ non-clust. Index on LastName
selecting LastName and FirstName

25 of 32

Table w/ non-clust. Index on LastName
including FirstName

26 of 32

Table with filtered index

27 of 32

Building indexes in Asc vs. Desc Order
selecting all records

28 of 32

Building indexes in Asc vs. Desc Order
select w/ ORDER BY ASC, no INDEX

29 of 32

Building indexes in Asc vs. Desc Order
select w/ ORDER BY ASC, with INDEX

30 of 32

Building indexes in Asc vs. Desc Order
select w/ ORDER BY DESC, no INDEX

31 of 32

Building indexes in Asc vs. Desc Order
select w/ ORDER BY DESC, with INDEX

32 of 32

