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Indexing

• Vital for system performance

• Improves query execution performance

• NOT one size fits all – trade offs must be made

• Penalties during INSERT/UPDATE – index 
update

• Two types of indexes:

– Clustered Indexes

– NonClustered Indexes

2 of 32



Index example
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Non-Clustered Index

• Data in pages in random order

• Logical data order in index

• NonClustered index tree
– Keys in sorted order

– Leaf pages contain pointers to rows in data pages

• Typicaly created on column used in 
JOIN, WHERE, ORDER BY

• Good for tables whose values may be 
modified frequently
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NonClustered Index (cont.)

• MS Sql Server: 
CREATE INDEX -> nonClustered by default

• Allowed more than index on a db table

• MS Sql Server 2008: 
up to 999 nonClustered indexes per table
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Non-Clustered Index example
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Non-Clustered Index - summation

• Create index on columns which are: 

– Frequently used in search criteria

– Used to JOIN different tables

– Used as foreign key fields

– Of having high selectability

– Used in ORDER BY clause

– Of type XML (primary and secondary indexes)
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Clustered Index

• Re-orders data rows to match the index
(rows in sort order on disk)

• Only one clustered index per table!

• Leaf level of the index tree - actual data rows

• Good for 
sequential access, and 
range selection
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Clustered Index (cont.)

• MS Sql Server INSERTS data according to the way 
a clustered index was created

• Most often: 
PRIMARY KEY => Clustered Index

• Every table SHOULD have clustered index
• w/o clustered index: 

records added to the end of the last page
• w/ clustered index:

data added to suitable position dictated by the 
index

9 of 32



Clustered Index example
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Clustered and Non-Clustered Index
combined
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Covering indexes

• Extending functionality of nonCls indexes

• Adding non-key columns to the leaf level

• Index covers more types of queries

• Covering Indexes = Indexes w/ incl. columns

• Great performance benefits
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Filtering indexes

• NonClustered index with a record filter

• Covers a subsed of records in a table

• Reduces storage space for index

• Better performance

• Decreased INSERT penalty
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Index selectivity and Density

• Selectivity:
number of distinct key values in the table

• PRIMARY KEY, UNIQUE – perfectly selective

• The higher selective Index, the better perform.

• Density:
number of duplicate key values in the table

• Query optimizer: index seek, index scan
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Fill factor

• Tuning storage and performance

• Fill factor = % of space for data in leaf pages

• Remainder of the page for future growth

• E.g. Fill factor=80%  =>  20% page empty

• Reserved space between index rows
(rather than at the of the index)

• Applied on CREATE or REBUILD INDEX
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Fill factor - guidelines

• Depends on how data are accessed

• Data inserted at the end of the table =>
FILL FACTOR = 90%-100%

• Data inserted anywhere =>
FILL FACTOR = 60%-80%

• The lower FF, the higher storage for the index

• In general: appropriate FF requires a lot of 
testing and probing
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Creating indexes – Best Practices

• Keep indexes narrow (one or few columns)
• Clustered index on every table
• Clustered index on a highly selective column
• Clustered index on a column that is never upd.
• Default: clustered index on PRIMARY KEY col.
• Be aware of penalties during INSERT/UPDATE
• Eliminate duplicate indexes. 
• Check the default FILL FACTOR
• Non-clustered indexes can be created in different 

file groups, which may increase performance
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Order of fields on each index?

• Bad order => index is not useful

• Most selective columns go first

• Sql Server knows data distribution only for the 
first column!

• Don’t place column from clustered index to a 
non-clustered index
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EXAMPLES
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Table with NO indexes
select * …
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Table w/ non-clust. index on LastName
select *
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Table w/ clust. index on LastName
select * …
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Table w/ non-clust. index on LastName
selecting LastName
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Table w/ clust. Index on LastName
selecting LastName
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Table w/ non-clust. Index on LastName
selecting LastName and FirstName
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Table w/ non-clust. Index on LastName
including FirstName
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Table with filtered index
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Building indexes in Asc vs. Desc Order
selecting all records
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Building indexes in Asc vs. Desc Order
select w/ ORDER BY ASC, no INDEX
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Building indexes in Asc vs. Desc Order
select w/ ORDER BY ASC, with INDEX
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Building indexes in Asc vs. Desc Order
select w/ ORDER BY DESC, no INDEX
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Building indexes in Asc vs. Desc Order
select w/ ORDER BY DESC, with INDEX
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