Solution hints for Refactoring Exercise

We'll use a Monopoly game written in Java (complete with JUnit testcases) Monopoly3.zip.

Get a copy of this project's source files (in Zip format) and create a new Java project, then import these files. (For a reminder of how to import these into Eclipse, see this earlier exercise.)

· Create a new Java project.

· Make sure that project has a folder named src in it. If not, select the project name, then right-click and choose New -> Source Folder. In the pop-up window, name it src.

· Right-click on the folder src and choose Import.

· Choose the zip file given above, and then hit Finish. (You should not need to change any other options.)

You should see the java files in packages under src but some of them will have red error-indicators. To fix that, you'll need to add JUnit to your project build-path after you import the files.

· Select the project, and then from the Project menu, choose Properties, then choose Java Build Path.

· In that window, choose Add External Jar, and then go find junit.jar in the junit subfolder of the plugins folder.

1. Getting Started

Let's make sure it works, first! Right-click on the src folder and from the Run menu choose Run JUnit Test. Is all well?

Let's play Monopoly! Try clicking on the GUI package, then right-clicking and choosing Run Java Application....

2. Renaming a Class Field

Class Cell is an abstract superclass with many subclasses. You can see this by selecting that class or file, and hitting F4 to see the class hierarchy. You can also see in the Outline view that Cell has a field named owner.

Use the Rename refactor operation to change the name of this to theOwner. Select all the options in that menu (to change references, comments, and getters and setters). Use Preview to see what would change.

3. Changing a Class Hierarchy

Staying in abstract class Cell, note that there is a field named available. Choose the PushDown refactoring to move this from the superclass to all of its subclasses.

But wait! Pushing down this method caused some errors to occur! See the red error-indicator icon next to GameMaster.java and Player.java? Or, do you see the list of errors in the Problem view? If you click on each error in the Problem view, you'll see we're trying to call setAvailable() or getAvailable() on a reference to an object of type Cell (the abstract class).

So this push-down wasn't a good idea (though it showed you how this can work). We could fix our mistake by choosing Refactor -> Undo. But before you do this, let's demonstrate the power of Eclipse's refactoring by doing this in a more "manual" way.

Let's un-do this by using Refactor -> Pull Up, the logical opposite of Push Down. Choose one of the subclasses of Cell, say, Card Cell. Select available and run the Pull Up refactoring. But, you might see there could be a problem with fixing things this way: you don't want to have to run Pull Up for all the subclasses of Cell! Go ahead and proceed, and be sure to choose the methods to pull-up that you pushed-down earlier.

Eclipse recognizes this problem, and the window lets you say if you want the identically-named fields and methods in other subclasses of Cell to also be pulled-up. To select them all, click the check-box by Cell once to clear everying, and then again to select everything.

4. Extracting an Interface

Abstract class Cell has a field called owner because players can own squares on a Monopoly board. What if players could own other things? Let's say this made sense, and we decided to make the notion of owning something an interface.

Choose Cell and then bring up the Extract Interface refactoring operation. Name the new interface IOwnable. Move appropriate members of Cell into this interface. Carry out this refactoring. You might find using the Preview option helpful here.

5. Extracting a Method from Code

A useful refactoring is to take a chunk of code and turn it into a method. Then it can be reused elsewhere. You can use this to remove instances of duplicated code too.

In the class PropertyCell there is a method getRent(). Let's take the first for-loop and make it a separate method. Highlight the loop itself and then choose Extract Method from the refactor menu. You might name the new function something like calcMonopoliesRent().Wait -- don't carry out the extraction yet.

Instead, cancel and go back and highlight the loop and the declaration of the String array right before it. Now do an Extract Method on that. Note that the signature of the function is different that previously.

Go ahead and carry out one of these two refactorings.

6. Creating a Local Variable from Repeated Code

The Extract Local Variable refactoring allows you take an expression that might be repeated and create a local variable from that expresssion. Let's try this.

Go to the GameBoard.addCell(PropertyCell). Note that the expression cell.getColorGroup() is used twice. Highlight one of those usages and then Extract Local Variable from the refactoring menu. Note that Eclipse suggests names for the local variable. carry out the refactoring.

7. Changing a Method's Signature

As the article on refactoring with Eclipse notes, you can change the signature of a method but you must think carefully about doing this. And Eclipse will certainly not be able to make all the logical changes that are required; you'll have to do more work after the refactoring operation is completed.

But let's see how this would work. In class Cell, select the abstract playAction() method, and use the refactoring Change Method Signature to:

· change the return type from void to boolean;

· add a new parameter called msg of type String.

