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* proucavanje kako programeri
sprovode zadatak izmene funkcije
autosave programa jEdit

* Cilj je bio razumeti faktore uspesnog |
efikasnog razumevanja programa, koji vode
uspesno realizovanom zadatku izmene



Postavke eksperimenta

 JEdit editor napisan u Javi
- 65000 linija koda, 301 klasa u 20 paketa
» Zadatak

- Omoguciti korisniku da eksplicitno onemoguci
autosave funkcionalnost

- Teskocu predstavlja Cinjenica da nema projektne
dokumentacije (osim javadoc) i funkcionalnost se
moze razumeti samo inspekcijom programskog koda

- Ocekivana izmena: 60tak linija of modifikovanih,
izbrisanih, ili dodatih u program, u 5 fajlova

» 5 programera je resavalo zadatak



Tok eksperimenta

Eksperiment je podeljen u tri faze:
1. Obuka za rad u Eclipse-u (30 minuta)

2. Proucavanje jEdit programa (1 sat)

- Dato: pisani material sa opisom zadatka,
test primeri za osnovne zahteve,

poCetna taCka za pregled koda
- Dozvoljen pregled i izvrSavanje koda jEdit-a
- Dozvoljeno belezenje pronadenih informacija
- Restrikcije
» Bez upotrebe dibagera
* Bez menjanja koda




Tok eksperimenta

3. lzmena programa (2 sata)
- Napraviti planirane izmene u programu

- Uspesnost obavljenog zadatka ocenjivana je sa 8
test primera (koliko testova Ce uspesno proci)

(na sajtu se moze naci jJEdit_izmena_resenje.zip)



Generalna strategija resavanja zadatka

1. Pregledati izvorni kod sistema

2. Locirati i razumeti kod koji je od znacaja za
zadatak
* Programski kod jEdita je obiman
* Relevantan kod je razbacan u raznim paketima
* Programski kod od znacaja za zadatak je deo nekog
koda koji nije od znacCaja
3. Primeniti izmene
4. Pospremanje

5. Validacija promena, takode u odnosu na
ostale nepromenjene funkcije

* Mozda ne znamo kako su te ostale funkcije radile pre
promena



Sta &ini zadatak teskim?

 Veliki programski kod
- Odakle poceti?
* Nedeskriptivha imena u programu
» TeskocCe u razumevanju zahteva i njegovih
podrazumevanih pretpostavki
- Oskudno znanje o domenu (npr. dizajn tekst editora,
korirs€eni java APIji)
» Dokumentacija neazurna, nepostojeca

Il nedovoljna
- Neki detalji nisu dokumentovani, jer je originalni
programer pretpostavljao da su svima ocigledni



Sta &ini zadatak teskim?

» Potreba da se razumeju mnoge druge klase da
bi se razumeo mali fragment koda

* Mogucnost dezorijentacije | zaboravljanja
glavnog cilja istrazivanja

- Odakle sam dosSao na ovo?

- Zasto sam otvorio ovu klasu?

 StatiCcki pogled u odnosu na izvrsavanje programa
- Koji objekti se zaista kreiraju?
- Koji metodi se zaista izvrsavaju?



Robillarov Eksperiment

 Prikupljeni su sledeci podaci:
- lzmenjeni artefakti

- Video snimci ekrana svakog
programera dok su resavali zadatak

» Uspeh resavanja zadatka je ocenjivan

- PotroSenim vremenom

- Kvalitetom izmena

* ReSenje je savrSeno ako implementira korektno
zahteve | uklapa se u postojeci dizajn jEdita
- Ne sme se npr. staviti konstanta tamo gde vrednost moze
da se procita iz nekog property objekta



Rezultati eksperimenta

Time Taken to Complete the Change Phase of the Study

Subject I 2| 3 4 5
Time (minutes) | 125 | 62 | 72 | 114 | 120
Programming Experience of Subjects
Subject 1 (213|415
Experience (years) | 1 |3 |5 |5 | 1
Solution Quality for Each Subject
Sub-task/Subject 1 7. 3 4 5
1-Check box Success Success | Success | Inelegant Success
2-State reset Not attempted | Buggy | Success | Buggy | Not attempted
3-Disabling Unworkable | Success | Success | Success | Unworkable
4-Deletion Unworkable | Success | Success | Buggy Unworkable
5-Recovery Unworkable | Success | Success | Success | Not attempted




Rezultati eksperimenta

« 2 uspesno resenje, 1 nekvalitetno, 2 neuspesna
« Uspesni programeri primenili su
sistematski pristup tokom analiziranja
programa i pre primene izmena:

- Razumevanjem opste strukture programa kroz
usmerene pretrage

- Potpunim planiranjem svih izmena unapred
* Neuspesni programeri sledili su nesistematski

prlstup povrsnlm pregledom koda i pogadanjem
» “sistematiski” ne znaci pregled liniju po liniju



Zapazanje 1 (Robillard)

* Neuspesni programeri su sve svoje modifikacije
koda izvrsili na jednom mestu, Cak i kad je
trebalorasporediti na vise mesta u skladu sa
postojeCim dizajnom.
- Jedan programer realizovao sve promene u jednom
jedinom metodu
Zakljucak: Nedovoljno proucavanje dizajna pre
obavljanja promene dovelo je do toga da se
menja jedino ono mesto u kodu koje je
bolje prouCeno od strane programera.



Zapazanje 2

* (Nepaznja tokom proucavanja programa).
Programski segmenti koji su bili

jasno relevantni za zadatak promene nisu
uoceni kao takvi kada su prikazani slucajno.

- Uspesni programeri vise su koristili unakrsno
referenciranje i pretragu po kljucnim reCima

- Neuspesni programeri vise su koristili obicno
pregledanje i skrolovanje teksta

» Zakljucak: Informacija relevantna za promenu se
otkriva samo ako se trazi eksplicitno.



Zapazanje 3

« Uspesni programeri napravili su detaljan i
kompletan plan pre sprovodenja izmene,
a neuspesni to nisu uradili.

 Zakljucak: Pravljenje detaljnog plana izmena
omogucava programeru

1. da razmisli o obimu analiziranog koda i proceni da
i je ta analiza bila dovoljna

2. da sprovede fokusiranu programsku pretragu da
razradi resenje



» Uspesni programeri nisu se vracali na
proucavanje istih metoda toliko Cesto koliko
neuspesni.

- Programeri koji su u stanju da bolje procene
vaznost proucavanog metoda su efikasniji.

- Programeri koji su u stanju da bolje razumeju
| zapamte metode koje su istrazivali su
efikasniji

- Programeri koji imaju teskoCe da otkriju

nove relevantne metode su manje efikasni



Zapazanje 5

» Uspesni programeri uglavnom su obaviljali
strukturno vodene pretrage, a ne pretrage na
osnhovu intuicije ili uskladene sa
dekompozicijom sistema po fajlovima

» Zakljuccl: Bez detaljnog poznavanja
iImplementacije sistema, pogadanje koje metode
treba prouciti (na osnovu imena/lokacije), nije
tako efikasno kao obavljanje fokusirane pretrage.
- Programeri treba da se odupru iskusenju da pokusaju da
pogode koiji je kod relevantan za promenu na osnovu
nestrukturnih kljuceva



Koje informacije su programeru
potrebne kada vrsi izmene koda?

» Rad autora Sillito et al. [2008]

« Sprovedene dve studije da se sazna koja

pitanja programeri formuliSu tokom zadatka
izmena u kodu



Informacije potrebne programeru

* Nalazenije inicijalnih tacaka fokusa u
kodu od znacCaja za zadatak

- Npr, nalazenje klasa koje reprezentuju domenske
koncepte
- Nalazenje klasa koje odgovaraju Ul elementima
- Nalazenje klasa od znacCaja za posmatranu funkciju
programa
- Da bi nasli informacije, progamer Koristi

» Tekstualne pretrage

« Debugger
* Pregled (Citanje) koda



Informacije potrebne programeru

 Dalje sticanje znanja na bazi inicijalnih tacaka

- UkljuCuje visSestruke informacije o istom
entitetu (koje smo ranije pomenuli)

- Relacije nasledivanja
- Upotreba u drugim klasama

- Pozivaoci/Pozvani odredenog metoda (posebno
u slucaju polimorfizma; dinamiCko ponasanje)
- Radi dolaska do ovih informacija, programmer
koristi:

 Call stack viewer u debugger-u

 Pretragu koris€Cenja imena



Informacije potrebne programeru
* |zgradnja modela povezanih informacije o
vise entiteta

- Moraju se razumeti visestruke relacije medu
entitetima

- Moraju se razumeti opstiji koncepti
(bit picture)
- Tok kontrole | podataka prilikom poziva metoda

- Problem kod pravljenja ovog modela je
zaboravljanje ranije ostvarenih saznanja



Zapazanja o upotrebi alata

» Raspolozivi alati uglavnhom daju odgovore
na konkretna pitanja o jednom entitetu

e Nema puno podrske za pitanja o vise entiteta niti
za opstu sliku

» Medu rezultatima upita koje daju alati ima
mnogo irelevantnih



Statistika koriscenja navigacionih
pogleda u Eclipse-u

BN Package Explorer
B Search

W Type Hierarchy
s Outline

s Call Hierarchy
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