

Kako se (ne)izgubiti tokom
zadatka za izmenu softvera

(eksperimentalna analiza procesa razumevanja programa)

•  proučavanje kako programeri
sprovode zadatak izmene funkcije
autosave programa jEdit
•  Cilj je bio razumeti faktore uspešnog i
efikasnog razumevanja programa, koji vode
uspešno realizovanom zadatku izmene

Postavke eksperimenta
•  JEdit editor napisan u Javi

-  65000 linija koda, 301 klasa u 20 paketa
•  Zadatak

-  Omogućiti korisniku da eksplicitno onemogući
autosave funkcionalnost
-  Teškoću predstavlja činjenica da nema projektne
dokumentacije (osim javadoc) i funkcionalnost se
može razumeti samo inspekcijom programskog koda
-  Očekivana izmena: 60tak linija of modifikovanih,
izbrisanih, ili dodatih u program, u 5 fajlova

•  5 programera je rešavalo zadatak

Tok eksperimenta
Eksperiment je podeljen u tri faze:
1. Obuka za rad u Eclipse-u (30 minuta)
2. Proučavanje jEdit programa (1 sat)

-  Dato: pisani material sa opisom zadatka,
test primeri za osnovne zahteve,

početna tačka za pregled koda
-  Dozvoljen pregled i izvršavanje koda jEdit-a
-  Dozvoljeno beleženje pronađenih informacija
-  Restrikcije

•  Bez upotrebe dibagera
•  Bez menjanja koda

Tok eksperimenta
3. Izmena programa (2 sata)

- Napraviti planirane izmene u programu
- Uspešnost obavljenog zadatka ocenjivana je sa 8
test primera (koliko testova će uspešno proći)

(na sajtu se može naći jEdit_izmena_resenje.zip)

Generalna strategija rešavanja zadatka

1.  Pregledati izvorni kod sistema
2.  Locirati i razumeti kod koji je od značaja za
zadatak

•  Programski kod jEdita je obiman
•  Relevantan kod je razbacan u raznim paketima
•  Programski kod od značaja za zadatak je deo nekog
koda koji nije od značaja

3.  Primeniti izmene
4.  Pospremanje
5.  Validacija promena, takođe u odnosu na
ostale nepromenjene funkcije

•  Možda ne znamo kako su te ostale funkcije radile pre
promena

Šta čini zadatak teškim?
•  Veliki programski kod

-  Odakle početi?
•  Nedeskriptivna imena u programu
•  Teškoće u razumevanju zahteva i njegovih
podrazumevanih pretpostavki

-  Oskudno znanje o domenu (npr. dizajn tekst editora,
koriršćeni java APIji)

•  Dokumentacija neažurna, nepostojeća
ili nedovoljna

-  Neki detalji nisu dokumentovani, jer je originalni
programer pretpostavljao da su svima očigledni

Šta čini zadatak teškim?
•  Potreba da se razumeju mnoge druge klase da
bi se razumeo mali fragment koda
•  Mogućnost dezorijentacije i zaboravljanja
glavnog cilja istraživanja

-  Odakle sam došao na ovo?
-  Zašto sam otvorio ovu klasu?

•  Statički pogled u odnosu na izvršavanje programa
-  Koji objekti se zaista kreiraju?
-  Koji metodi se zaista izvršavaju?

Robillarov Eksperiment
•  Prikupljeni su sledeći podaci:

- Izmenjeni artefakti
- Video snimci ekrana svakog
programera dok su rešavali zadatak

•  Uspeh rešavanja zadatka je ocenjivan
- Potrošenim vremenom
- Kvalitetom izmena

•  Rešenje je savršeno ako implementira korektno
zahteve i uklapa se u postojeći dizajn jEdita

-  Ne sme se npr. staviti konstanta tamo gde vrednost može
da se pročita iz nekog property objekta

Rezultati eksperimenta

Rezultati eksperimenta
•  2 uspešno rešenje, 1 nekvalitetno, 2 neuspešna
•  Uspešni programeri primenili su

sistematski pristup tokom analiziranja
programa i pre primene izmena:
-  Razumevanjem opšte strukture programa kroz
usmerene pretrage
-  Potpunim planiranjem svih izmena unapred

•  Neuspešni programeri sledili su nesistematski
pristup površnim pregledom koda i pogađanjem

•  “sistematiski” ne znači pregled liniju po liniju

Zapažanje 1 (Robillard)
•  Neuspešni programeri su sve svoje modifikacije
koda izvršili na jednom mestu, čak i kad je
trebalorasporediti na više mesta u skladu sa
postojećim dizajnom.

-  Jedan programer realizovao sve promene u jednom
jedinom metodu

•  Zaključak: Nedovoljno proučavanje dizajna pre
obavljanja promene dovelo je do toga da se
menja jedino ono mesto u kodu koje je
bolje proučeno od strane programera.

Zapažanje 2

•  (Nepažnja tokom proučavanja programa).
Programski segmenti koji su bili
jasno relevantni za zadatak promene nisu
uočeni kao takvi kada su prikazani slučajno.
-  Uspešni programeri više su koristili unakrsno
referenciranje i pretragu po ključnim rečima
-  Neuspešni programeri više su koristili obično
pregledanje i skrolovanje teksta

•  Zaključak: Informacija relevantna za promenu se
 otkriva samo ako se traži eksplicitno.

Zapažanje 3
•  Uspešni programeri napravili su detaljan i
kompletan plan pre sprovođenja izmene,
a neuspešni to nisu uradili.
•  Zaključak: Pravljenje detaljnog plana izmena
omogućava programeru

1.  da razmisli o obimu analiziranog koda i proceni da
li je ta analiza bila dovoljna
2.  da sprovede fokusiranu programsku pretragu da
razradi rešenje

Zapažanje 4
•  Uspešni programeri nisu se vraćali na
proučavanje istih metoda toliko često koliko
neuspešni.
•  Zaključci:

- Programeri koji su u stanju da bolje procene
važnost proučavanog metoda su efikasniji.
- Programeri koji su u stanju da bolje razumeju
i zapamte metode koje su istraživali su
efikasniji
- Programeri koji imaju teškoće da otkriju
nove relevantne metode su manje efikasni

Zapažanje 5
•  Uspešni programeri uglavnom su obavljali
strukturno vođene pretrage, a ne pretrage na
osnovu intuicije ili usklađene sa
dekompozicijom sistema po fajlovima
•  Zaključci: Bez detaljnog poznavanja
implementacije sistema, pogađanje koje metode
treba proučiti (na osnovu imena/lokacije), nije
tako efikasno kao obavljanje fokusirane pretrage.

-  Programeri treba da se odupru iskušenju da pokušaju da
pogode koji je kod relevantan za promenu na osnovu
nestrukturnih ključeva

Koje informacije su programeru
potrebne kada vrši izmene koda?

•  Rad autora Sillito et al. [2008]
•  Sprovedene dve studije da se sazna koja
pitanja programeri formulišu tokom zadatka
izmena u kodu

Informacije potrebne programeru
•  Nalaženje inicijalnih tačaka fokusa u
kodu od značaja za zadatak

-  Npr, nalaženje klasa koje reprezentuju domenske
koncepte
-  Nalaženje klasa koje odgovaraju UI elementima
-  Nalaženje klasa od značaja za posmatranu funkciju
programa
-  Da bi našli informacije, progamer koristi

•  Tekstualne pretrage
•  Debugger
•  Pregled (čitanje) koda

Informacije potrebne programeru
•  Dalje sticanje znanja na bazi inicijalnih tačaka

- Uključuje višestruke informacije o istom
entitetu (koje smo ranije pomenuli)
- Relacije nasleđivanja
- Upotreba u drugim klasama
- Pozivaoci/Pozvani određenog metoda (posebno
u slučaju polimorfizma; dinamičko ponašanje)
- Radi dolaska do ovih informacija, programmer
koristi:

•  Call stack viewer u debugger-u
•  Pretragu korišćenja imena

Informacije potrebne programeru
•  Izgradnja modela povezanih informacije o
više entiteta
- Moraju se razumeti višestruke relacije među
entitetima
- Moraju se razumeti opštiji koncepti
(bit picture)
- Tok kontrole I podataka prilikom poziva metoda
- Problem kod pravljenja ovog modela je
zaboravljanje ranije ostvarenih saznanja

Zapažanja o upotrebi alata
•  Raspoloživi alati uglavnom daju odgovore
na konkretna pitanja o jednom entitetu
 Nema puno podrške za pitanja o više entiteta niti

za opštu sliku
•  Među rezultatima upita koje daju alati ima
mnogo irelevantnih

Statistika korišćenja navigacionih
pogleda u Eclipse-u

Literatura
•  M. Robillard, W. Coelho, and G. Murphy. How

effective developers investigate source code: An
exploratory study. IEEE Transactions on
Software Engineering, 30
(12), 2004.

•  J. Sillito, G. Murphy and K. De Volder. Questions
programmers ask during software evolution
tasks. IEEE Transactions on Software
Engineering, 34(4), 2008.
•  G. Murphy, M. Kersten, and L. Findlater. How

are Java Software Developers using the Eclipse
IDE?, IEEE Software, 2006.

