Kako se (ne)izgubiti tokom
zadatka za izmenu softvera

(eksperimentalna analiza procesa razumevanja programa)

IEEE TRAMSACTIONS ON SOFTWARE ENGINEERING, WOL. 30, NO. 12, DECEMEBER 2004 8BS

How Effective Developers Investigate
Source Code: An Exploratory Study

Martin P. Robillard, Wesley Coelho, and Gail C. Murphy, Member, IEEE Computer Society

* proucavanje kako programeri
sprovode zadatak izmene funkcije
autosave programa jEdit

* Cilj je bio razumeti faktore uspesnog |
efikasnog razumevanja programa, koji vode
uspesno realizovanom zadatku izmene

Postavke eksperimenta

 JEdit editor napisan u Javi
- 65000 linija koda, 301 klasa u 20 paketa
» Zadatak

- Omoguciti korisniku da eksplicitno onemoguci
autosave funkcionalnost

- Teskocu predstavlja Cinjenica da nema projektne
dokumentacije (osim javadoc) i funkcionalnost se
moze razumeti samo inspekcijom programskog koda

- Ocekivana izmena: 60tak linija of modifikovanih,
izbrisanih, ili dodatih u program, u 5 fajlova

» 5 programera je resavalo zadatak

Tok eksperimenta

Eksperiment je podeljen u tri faze:
1. Obuka za rad u Eclipse-u (30 minuta)

2. Proucavanje jEdit programa (1 sat)

- Dato: pisani material sa opisom zadatka,
test primeri za osnovne zahteve,

poCetna taCka za pregled koda
- Dozvoljen pregled i izvrSavanje koda jEdit-a
- Dozvoljeno belezenje pronadenih informacija
- Restrikcije
» Bez upotrebe dibagera
* Bez menjanja koda

Tok eksperimenta

3. lzmena programa (2 sata)
- Napraviti planirane izmene u programu

- Uspesnost obavljenog zadatka ocenjivana je sa 8
test primera (koliko testova Ce uspesno proci)

(na sajtu se moze naci jJEdit_izmena_resenje.zip)

Generalna strategija resavanja zadatka

1. Pregledati izvorni kod sistema

2. Locirati i razumeti kod koji je od znacaja za
zadatak
* Programski kod jEdita je obiman
* Relevantan kod je razbacan u raznim paketima
* Programski kod od znacaja za zadatak je deo nekog
koda koji nije od znacCaja
3. Primeniti izmene
4. Pospremanje

5. Validacija promena, takode u odnosu na
ostale nepromenjene funkcije

* Mozda ne znamo kako su te ostale funkcije radile pre
promena

Sta &ini zadatak teskim?

 Veliki programski kod
- Odakle poceti?
* Nedeskriptivha imena u programu
» TeskocCe u razumevanju zahteva i njegovih
podrazumevanih pretpostavki
- Oskudno znanje o domenu (npr. dizajn tekst editora,
korirs€eni java APIji)
» Dokumentacija neazurna, nepostojeca

Il nedovoljna
- Neki detalji nisu dokumentovani, jer je originalni
programer pretpostavljao da su svima ocigledni

Sta &ini zadatak teskim?

» Potreba da se razumeju mnoge druge klase da
bi se razumeo mali fragment koda

* Mogucnost dezorijentacije | zaboravljanja
glavnog cilja istrazivanja

- Odakle sam dosSao na ovo?

- Zasto sam otvorio ovu klasu?

 StatiCcki pogled u odnosu na izvrsavanje programa
- Koji objekti se zaista kreiraju?
- Koji metodi se zaista izvrsavaju?

Robillarov Eksperiment

 Prikupljeni su sledeci podaci:
- lzmenjeni artefakti

- Video snimci ekrana svakog
programera dok su resavali zadatak

» Uspeh resavanja zadatka je ocenjivan

- PotroSenim vremenom

- Kvalitetom izmena

* ReSenje je savrSeno ako implementira korektno
zahteve | uklapa se u postojeci dizajn jEdita
- Ne sme se npr. staviti konstanta tamo gde vrednost moze
da se procita iz nekog property objekta

Rezultati eksperimenta

Time Taken to Complete the Change Phase of the Study

Subject I 2| 3 4 5
Time (minutes) | 125 | 62 | 72 | 114 | 120
Programming Experience of Subjects
Subject 1 (213|415
Experience (years) | 1 |3 |5 |5 | 1
Solution Quality for Each Subject
Sub-task/Subject 1 7. 3 4 5
1-Check box Success Success | Success | Inelegant Success
2-State reset Not attempted | Buggy | Success | Buggy | Not attempted
3-Disabling Unworkable | Success | Success | Success | Unworkable
4-Deletion Unworkable | Success | Success | Buggy Unworkable
5-Recovery Unworkable | Success | Success | Success | Not attempted

Rezultati eksperimenta

« 2 uspesno resenje, 1 nekvalitetno, 2 neuspesna
« Uspesni programeri primenili su
sistematski pristup tokom analiziranja
programa i pre primene izmena:

- Razumevanjem opste strukture programa kroz
usmerene pretrage

- Potpunim planiranjem svih izmena unapred
* Neuspesni programeri sledili su nesistematski

prlstup povrsnlm pregledom koda i pogadanjem
» “sistematiski” ne znaci pregled liniju po liniju

Zapazanje 1 (Robillard)

* Neuspesni programeri su sve svoje modifikacije
koda izvrsili na jednom mestu, Cak i kad je
trebalorasporediti na vise mesta u skladu sa
postojeCim dizajnom.
- Jedan programer realizovao sve promene u jednom
jedinom metodu
Zakljucak: Nedovoljno proucavanje dizajna pre
obavljanja promene dovelo je do toga da se
menja jedino ono mesto u kodu koje je
bolje prouCeno od strane programera.

Zapazanje 2

* (Nepaznja tokom proucavanja programa).
Programski segmenti koji su bili

jasno relevantni za zadatak promene nisu
uoceni kao takvi kada su prikazani slucajno.

- Uspesni programeri vise su koristili unakrsno
referenciranje i pretragu po kljucnim reCima

- Neuspesni programeri vise su koristili obicno
pregledanje i skrolovanje teksta

» Zakljucak: Informacija relevantna za promenu se
otkriva samo ako se trazi eksplicitno.

Zapazanje 3

« Uspesni programeri napravili su detaljan i
kompletan plan pre sprovodenja izmene,
a neuspesni to nisu uradili.

 Zakljucak: Pravljenje detaljnog plana izmena
omogucava programeru

1. da razmisli o obimu analiziranog koda i proceni da
i je ta analiza bila dovoljna

2. da sprovede fokusiranu programsku pretragu da
razradi resenje

» Uspesni programeri nisu se vracali na
proucavanje istih metoda toliko Cesto koliko
neuspesni.

- Programeri koji su u stanju da bolje procene
vaznost proucavanog metoda su efikasniji.

- Programeri koji su u stanju da bolje razumeju
| zapamte metode koje su istrazivali su
efikasniji

- Programeri koji imaju teskoCe da otkriju

nove relevantne metode su manje efikasni

Zapazanje 5

» Uspesni programeri uglavnom su obaviljali
strukturno vodene pretrage, a ne pretrage na
osnhovu intuicije ili uskladene sa
dekompozicijom sistema po fajlovima

» Zakljuccl: Bez detaljnog poznavanja
iImplementacije sistema, pogadanje koje metode
treba prouciti (na osnovu imena/lokacije), nije
tako efikasno kao obavljanje fokusirane pretrage.
- Programeri treba da se odupru iskusenju da pokusaju da
pogode koiji je kod relevantan za promenu na osnovu
nestrukturnih kljuceva

Koje informacije su programeru
potrebne kada vrsi izmene koda?

» Rad autora Sillito et al. [2008]

« Sprovedene dve studije da se sazna koja

pitanja programeri formuliSu tokom zadatka
izmena u kodu

Informacije potrebne programeru

* Nalazenije inicijalnih tacaka fokusa u
kodu od znacCaja za zadatak

- Npr, nalazenje klasa koje reprezentuju domenske
koncepte
- Nalazenje klasa koje odgovaraju Ul elementima
- Nalazenje klasa od znacCaja za posmatranu funkciju
programa
- Da bi nasli informacije, progamer Koristi

» Tekstualne pretrage

« Debugger
* Pregled (Citanje) koda

Informacije potrebne programeru

 Dalje sticanje znanja na bazi inicijalnih tacaka

- UkljuCuje visSestruke informacije o istom
entitetu (koje smo ranije pomenuli)

- Relacije nasledivanja
- Upotreba u drugim klasama

- Pozivaoci/Pozvani odredenog metoda (posebno
u slucaju polimorfizma; dinamiCko ponasanje)
- Radi dolaska do ovih informacija, programmer
koristi:

 Call stack viewer u debugger-u

 Pretragu koris€Cenja imena

Informacije potrebne programeru
* |zgradnja modela povezanih informacije o
vise entiteta

- Moraju se razumeti visestruke relacije medu
entitetima

- Moraju se razumeti opstiji koncepti
(bit picture)
- Tok kontrole | podataka prilikom poziva metoda

- Problem kod pravljenja ovog modela je
zaboravljanje ranije ostvarenih saznanja

Zapazanja o upotrebi alata

» Raspolozivi alati uglavnhom daju odgovore
na konkretna pitanja o jednom entitetu

e Nema puno podrske za pitanja o vise entiteta niti
za opstu sliku

» Medu rezultatima upita koje daju alati ima
mnogo irelevantnih

Statistika koriscenja navigacionih
pogleda u Eclipse-u

BN Package Explorer
B Search

W Type Hierarchy
s Outline

s Call Hierarchy

* M. Robillard, W. Coelho, and G. Murphy. How
effective developers investigate source code: An
exploratory study. IEEE Transactions on
Software Engineering, 30

(12), 2004

« J. Sillito, G. Murphy and K. De Volder. Questions
programmers ask during software evolution

tasks. IEEE Transactions on Software
Engineering, 34(4), 2008.

* G. Murphy, M. Kersten, and L. Findlater. How
are Java Software Developers using the Eclipse
IDE?, IEEE Software, 2000.

