Internet programiranje
JavaScript - skolska 2017/2018

Drazen Draskovic, Elektrotehnicki fakultet u Beogradu
Sanja DelcCev, ElektrotehnicCki fakultet u Beogradu

© TemplatesWise.com

Zasto JavaScript

* Nedostatak HTML strana je nemogucnost
dinamicke obrade unetih podataka od
strane korisnika.

» Zato se doslo do zakljucka da HTML
postaje ogranicavajuci faktor i da je
potrebna nova tehnologija za realizaciju
dinamickih delova aplikacije.

Prve tehnologije

* Prvi pokusaj je bio pomocu serverskih
komponenti, od kojih he najpopularnija bila
CGI (Common Gateway Interface).

Ipak, problem je predstavljala Cesta
klijent-server komunikacija. Sve akcije se
obavljaju na serverskoj strani.

|storijat

 Decembra 1995. godine, Netscape | Sun predstavili su
jezik JavaScript 1.0, originalno nazvan LiveScript.

* QOvaj jezik je omogucio ne samo formatiranje podataka
na klijentskoj strani, veC i obradu | dinamicko izvrsavanje
stranica. Treba napomenuti da je implementiran deo
jezika koji se izvrsavao | na serverskoj strani, Cime je
omogucio da se ista tehnologija koristi na obe strane
aplikacije, ali ovaj deo JavaScript jezika nije dostigao
vecu popularnost i neCe se razmatrati.

Standardizacija

» Sledeci korak u popularnosti JavaScript jezika je bila
Microsoft-ova implementacija u okviru Citaca Internet
Explorer verzije 3, pri Cemu je ova verzija od strane
Microsoft-a nazvana JScript. JScript je bio baziran na
javnoj dokumentaciji Netscape-a bio je skoro identiCan
JavaScript jeziku.

« ECMA JavaScript verzija postao Netscape-ova
Implementacija ovog standarda, a JScript Microsoft-ova.
| danas obe verzije standarda su identiCne u preko 95%
slucajeva.

« JavaScript je:
— objektno baziran,
— platformski neutralan,
— visekorisnicki jezik.
« JavaScript programeru omogucava mnogo
vecu funkcionalnost na klijentskoj strani.

Sta je objektno baziran?

Svi koncepti objektno orijentisanih jezika nisu
realizovani u ovom jeziku, da je veoma limitiran rad
sa nasledivanjem, vazenjem i funkcionalnoscu
samih objekata. Sa druge strane postoje hijerarhija
ugradenih objekata i oni se mogu koristiti, sa vecC
definisanim metodama | osobinama (property).

Ovakvim pristupom dobijeno je na jednostavnosti
samog jezika, a pomocu ugranenih objekata nije
izgubljena potrebna funkcionalnost.

Opis JavaScript jezika

CLIENT-SIDE JAVASCRIPT

_lient-side
additions

(such as window
and history)

1

Client-side

Core
JavaScript

_ore language
features (such
as variables,

functions, and
LiveConnect)

neryer-gide
additions

(such as server
and database

Serverside

SERVER-SIDE JAVASCRIPT

Platformski neutralan jezik

 Platformski neutralan jezik, kao i HTML, Sto znaci da
bi njegov kod (ako je pisan po standardu) trebalo da
se izvrSava u okviru CitaCa klijenta, bez obzira koja
je hardverska masina ili sofvtersko okruzenje u
pitanju.

* VeliCina programa pisanih u ovom jeziku dovoljno je
mala da moze da se izvrSava | ha masinama sa
loSijim perfomansama.

JavaScript | HTML

» Jos jedna od prednosti JavaScript jezika je njegova
Integrisanost sa HTML-om. U okviru jedne stranice
je moguce je na proizvoljan nacin kombinovati
JavaScript 1 HTML kod.

Takode iz JavaScript-a moguce je generisati sam
HTML kod, u zavisnosti od odredene akcije
korisnika.

JavaScript

Osnove jezika

Kako se ukljucuje programski kod?

Programski kod ovog jezika se moze ukljucuti u
okviru HTML stranice na dva nacina.

Prvi je direktnim pisanjem koda u okviru stranice.

<script language="JavaScript">
...neki JavaScript kod...
</script>

Nije neophodno da se navodi atribut language=
"JavaScript"”, jer on ima podrazumevanu vrednost
JavaScript

Primer 1 - HelloJavaScript.html

JavasScript fajl (.Js)

* Drugi nacin je poziv js dokumenta. U okviru taga se
definise spoljasnji dokument u okviru atributa src.

Struktura ove vrste koda je:
<script language="JavaScript" src="JSkod.js">
</script>

gde je JSkod.|s dokument koji sadrzi zeljene
JavasScript funkcije, na primer:

document.write ("Ovo jJe JavaScript eksterni
fajl!");

Odvajanje linijja koda

* Podrazumevani separator je novi red.

* Nije greska ako se koristi simbol ";".

« Jedini izuzetak, kada se obavezno mora koristiti
tacka-zarez je ako se navodi vise naredbi u istom

redu.

Tada se svaka pojedinacna naredba mora odvojiti
sa taCckom-zarez.

Komentar

« Za komentar jedne linije koda se koristi oznaka //,
na primer:
// komentar u jednoj liniji

« Za komentarisanje vise redova koriste se oznake
[* za poCetak bloka pod komentarom
| oznake */ za kraj bloka pod komentarom

Primer:
/* ovo Je komentar

u vise linija */

Prikaz HTML teksta

 HTML tekst se prikazuje pomocu JavaScript koda na
stranici koriscenjem metoda
document.write ("nekil tekst koji se prikazuje");

* Argument ovog metoda je string koji moze biti
proizvoljan HTML kod. Na primer:

<script language="JavaScript">

document.write ("Prvi red
<i>Drugi
red</i>")
</script>

Nazivi promenljivih

* Imena promenljivih mogu da sadrze brojeve | slova
engleske abecede, ali prvi znak mora da bude slovo

engleske abecede ili simbol " " .
 Ne mogu se Kkoristiti prazna mesta u okviru imena.

 Ne mogu se koristiti rezervisane recCi kao imena
promenljivih.

val

« Koristi se za deklarisanje promenljive.
(deklaracija je kreiranje promenljive, a definicija znaci |
Inicijalizaciju - postavljanje poCetne vrednosti)

var 1mePromenljive;

* Opciono moguce je izvrsiti | njenu inicijalizaciju.

var

var

var

var

imePromenljive = vrednost;

ime promenljivel = vrednostl,
ime promenljiveZ2 = vrednostZ,

evro; //deklaracija promenlijiva

dinar = 95; //definicija int promenlijive

val

* Nije neophodno deklarisati promenljivu
pre prve dodele vrednosti (automatski Ce se
izvrsiti deklarisanje).

* Predeklarisanje je dozvoljeno.

var

» Sledece Cetiri sekvence imaju isti efekat:

" var X;
X=8;

" x=8;
var X;

" var x=8;

" x=8;

Case sensitive

« JavaScript je case sensitive jezik, sto znaCi da se
velika | mala slova razlikuju, pa je promenljiva Aaa

razliCita promenljiva od promenljive AAA.

Takode se kljucne reci (for, if, else, class, int,...)
ne mogu Kkoristiti u imenu promenljivih.

Tipovi podataka

Informacija koja se sadrzi u promenljivoj.
Postoje:

 celobrojni brojevi,

* racionalni brojevi,

* stringovi (niz karaktera),

* logicki tip (true/false).

Tip podataka definise i vrste operacija koje
se mogu izvrsiti sa tom promenljivom.

Celobrojni brojevi

Mogu se koristiti sa brojnom osnovom 10, sa osnovom 8
| osnovom 16.

UobiCajena je predstava pomocu osnove 10. Ovakvi
brojevi imaju cifre od 0 - 9, s tim da pocCetna cifra ne sme
biti O.

Brojevi prikazani u oktalnom brojnom sistemu sa
osnovom 8 moraju pocinjati sa cifrom 0, a ostale cifre su
od 0 -7.

Brojevi prikazani u heksadecimalnom brojnom sistemu
sa osnovom 16 moraju pocinjati sa Ox ili 0X,

a ostale cifre su od O - 15, s tim da se cifre 10 - 15
prikazuju slovima A - F.

Racionalni brojevi

* Mogu se prikazati na dva nacina:

— pomocu decimalne tacke,
na primer 3.14

— pomocu eksponencijalne prezentacije,
na primer 314E-2 ili 314e-2

String

« String predstavlja proizvoljan niz karaktera
izmedu navodnika ("neki tekst") ili
izmedu apostrofa (‘'neki tekst').

« U stringovima se mogu Kkoristiti i specijalni karakteri.

Specijalni karakteri

\b = jedno mesto levo (backspace)

\f = jedan red nadole (form feed)

\n = pocetak novog reda (new line character)
\r = return (carriage return)

\t = tabulator (tab)

Konverzija u string - primer

<script>
X = 2 + 4;
document.write (x),; document.write ("
");
X = "2" 4+ "4",;
document.write (x),; document.write ("
");
X = 2 + "4";
document.write (x),; document.write ("
");
x = "2" + 4;
document.write (x),; document.write ("
");

</script>

Konverzija u string

* Resenje:
6
24
24
24
« Zakljucak:
Integer se uvek konvertuje u string pri
konkatenaciji sa stringom.

Logicki tip

* LogicCki tip podataka obuhvata dve
vrednosti true (tacno) | false (netacno).

* Prilikom rada ako je potrebno moze se
izvrsiti konverzija logiCke
vrednosti true u broj 1 |
vrednosti false u broj O.

Konverzije podataka

« JavaScript je jezik koji automatski izvrSava promenu
jednog tipa u drugi, jer se dozvoljava da promenljiva
Ima razliCite tipove podataka u razliCito vreme
Izvrsavanja programa.

* Primer:
a =>5; //a je sada celobrojni podatak
b = 8; //b je sada celobrojni podatak
b = "broj " + a;

/* b je sada string podatak, zato 3to
se na string "broj" nadovezuje ceo
broj, pa se dobija string! */

Null vrednost

* Vrednost null je

— tip podataka/vrednost koja se moze dodeliti promenljivoj
— promenljiva koja nema vrednost

— dodeljena promenljivoj kada zelimo da definisemo da
promenljiva ne sadrzi nikakav podatak

OPERATORI

« QOperatori su specijalni karakteri, koji definisu
operaciju koja treba da se izvrsi nad operandima,
koji mogu biti promenljive, izrazi ili konstante.

AritmetiCki operatori

« Koriste se za matematiCke operacije.

« Ukoliko je jedan od operanada tipa String za sve
operatore, osim za sabiranje, pokusace se da se
izvede konverzija Stringa u broj i da se tako izvrsi
definisana operacija.

Ako se ne uspe kao rezultat se dobija specijalna
vrednost NaN (Not A Number).

* |zuzetak kod sabiranja: podatak koji nije tipa String
konvertuje se u String i izvrSava se sabiranje dva

Stringa.
e a=24; b="broj " + a; //dobija se da je b: broj 24

AritmetiCki operatori - pregled

Operator Opis Operator Opis
+ sabiranje += sabiranje dodela
- oduzimanje -= oduzimanje dodela
* mnozenje *= mnozenje dodela
/ deljenje /= deljenje dodela
% moduo %= moduo dodela
++ iInkrement -~ dekrement

(x=x+1) (x=x-1)

Operatori na nivou bita

« Operatori iz ove grupe obavljaju operacije nad
celobrojnim brojevima, i to duzine 32 bita.
« Ukoliko neki od operanada nije celobrojni broj

duzine 32 bita, pokusace se izvrsiti konverzija u
trazeni tip, pa tek onda primeniti operacija.

Tabela operatori na nivou bita

Logicko | (and)
Logicko ILI (or)

Logicko eksluzivno
ILI (xor)

Logicko NE (not)
Pomeranje ulevo

Pomeranje udesno
sa znakom

Pomeranje udesno
sa nulama

a&b
alb
ab

~a
a<<b

a>>Dhb

a>>>b

Rezultat je 1, samo ako su oba bita 1.
Rezultat je 0, samo ako su oba bita 0.
Rezultat je 1, samo ako je jedan bit 1, a
drugi O.

Komplementira bit 0->1, 1->0.

Pomera binarni sadrzaj operanda a za b

mesta ulevo. Prazna mesta popunjava
nulama.

Pomera binarni sadrzaj operanda a za b
mesta udesno. Prazna mesta popunjava
vrednoScu najstarijeg bita.

Pomera binarni sadrzaj operanda a za b
mesta udesno. Prazna mesta popunjava
sa vrednosScu 0.

Primeri

. 13 & 8 daje 8 (1101 & 1000 = 1000)
. 13| 8 daje 13 (1101 | 1000 = 1101)
. 13~ 8 daje 5 (1101 ~ 1000 = 0101)

LogiCki operatori

* Imaju vrednosti:
— true
— false

* Ovi operatori imaju veliku primenu u okviru
kontrolama toka.

| (&8&)

ILL(]l)

NE (1)

LogiCki operatori - pregled

izrazl && izraz2

izrazl || izraz2

l'izraz

Rezultat je TRUE, jedino ako su oba
izraza TRUE, u ostalim sluCajevima
FALSE.

Rezultat je TRUE, ako je bar jedan
izraz TRUE, ako su oba FALSE,
rezultat je FALSE.

Rezultat daje komplement: ako je
izraz TRUE rezultat je FALSE |
obrnuto.

Primer upotrebe navedenih operatora

a = true;

b = false;

c =a || b;

d = a && b;

f = (la && b) || (a && !b);

g = la;

document.write(" a = " + a + "
");
document.write(" b =" + b + "
");
document.write(" ¢ =" + ¢ + "
");
document.write(" 4 =" + d + "
");
document ..write ("™ £ =" + £ + "
");
document.write(" g =" + qg);

Operatori poredenja

* Obavljaju poredenje dve vrednosti i kao rezultat
vracaju vrednost logickog tipa true ili false.

« Svaki dozvoljeni tip podataka, celobrojan, racionalni,
karakter, String i logiCki tip moze se uporedivati
koristeCi operatore == |=.

« Samo numericki tipovi koriste ostale operatore.

Tabela operatora za poredenje

Operator Upotreba Opis

Jednakost X == Rezultat je TRUE, ako su operandi x i y jednaki
Nejednakost Xl=y Rezultat je TRUE, ako su operandi x i y razliCiti
Vece X >y Rezultat je TRUE, ako je x veCe od y

Vece ili jednako X>=y Rezultat je TRUE, ako je x vece ili jednako y
Manje X<y Rezultat je TRUE, ako je x manje od y

Manije ili jednako X <=y

Jednakost (bez X ===
konverzije tipova)
RazliCito (bez X l==
konverzije tipova)

Rezultat je TRUE, ako je x manje ili jednako y

Rezultat je TRUE, ako su x iy jednaki, ali bez
konverzije tipova (moraju biti istog tipa!)

Rezultat je TRUE, ako su x i y razliciti, ali bez
konverzije tipova

Razlika izmedu == | ===

« Operatori == != obavljaju potrebnu konverziju podataka
pre poredenja, ukoliko su operandi razliCitog tipa.
Znaci za ove operatore vrednosti 5 (integer) 1 "5" (string)
su iste, pa Ce posle njihovog poredenja rezultat sa
operatorom == biti TRUE, a sa operatorom != FALSE.

« S druge strane operatori === | !== ne obavljaju potrebnu
konverziju podataka pre poredenja, ukoliko su operandi
razliCitog tipa. Znaci za ove operatore vrednosti 5 (ceo
broj) i "5" (string) su razliCite, pa ¢e posle njihovog
poredenja rezultat sa operatorom === biti FALSE, a sa
operatorom == TRUE.

* Primer:

a = 4;

b = 1;

c = a < by

d = a == b;

document.write(" ¢ =" + ¢ + "
");
document.write(" d = " + d);

* Rezultat izvrsavanja prethodnog primera je
= false

C
d = false

Kontrole toka

If - else

« konstrukcija omogucava izvrsenje odredenog bloka instrukcija
ako je uslov konstrukcije ispunjen. OpSti oblik konstrukcije je:

if (boolean izraz) blokl;
[else blok?2;]

svaki od blokova, bilo u if ili u else delu moze biti nova if-else
konstrukcija. Primer upotrebe ove konstrukcije je:

1if (x == 8) {
y = Xy

} else {
Z = X;

y =y * X

If -then - else

- Forma ovog operatora je:

expression ? statementl : statement?
gde je izraz expression bilo koji izraz Ciji rezultat je
vrednost logiCkog tipa (na primer: a>b)

« Ako je rezultat izraza true, onda se izvrsava
statementl, u suprotnom statement2.

e Primer:

(x32==0) ? document.write ("paran broj")
document.write ("neparan broj");

Slozena iIf - else konstrukcija

1f (mesec == 1)
ime meseca = "Januar"
else 1f (mesec == 2)
ime meseca = "Februar"
else 1f (mesec == 3)
ime meseca = "Mart"

else 1f (mesec == 4)

ime meseca = "Maj"
else
else 1f (mesec == 12)

ime meseca = "Decembar"

switch

switch (mesec) {

(
case l: ime meseca = "Januar"; break;
case 3: 1me meseca = " Mart"; break;
case 5: 1me meseca = "Maj"; break;
case 7: 1ime meseca = "Jul"; break;
case 8: 1me meseca = "Avgust"; break;
case 10: ime meseca = "Oktobar"; break;
case 12: ime meseca = "Decembar"; break;
case 4: ime meseca = " April"; break;
case 6: ime meseca = "Jun"; break;
case 9: ime meseca = "Septembar"; break;
case 11: ime meseca = "Novembar"; break;
case 2: 1ime meseca = " Februar";
default: ime meseca = " Nije naveden mesec";

}
» Ukoliko se vrednost izraza mesec ne nalazi medju vrednostima

case 1,..., N, tada se izvrSava blok naredbi default;

while petlja

« while petlja funkcionise na taj nacCin sto se blok
Instrukcija unutar nje ponovljeno izvrSava sve dok je
uslov za ostanak u petlji, koji se nalazi na ulasku u petlju,
iIspunjen. Opsti oblik petlje izgleda ovako:
while (uslov _ostanka)

telo petlje;
}

« Jednostavan primer:
i=1
while (i<=10) {

document.writeln (i) ;

l4
i=1i+1;

lzvrsavanje while petlje

« Nakon izvrsavanja ovog primera dobice se
prikazani brojevi od 1 do 10.

* Treba napomenuti da Ce se u sluCaju da uslov
petlje nije ispunjen kada se prvi put ispituje uslov
netlje, telo petlje nece izvrsiti nijednom.

« Dakle, ovo je petlja koja se izvrSava nijednom,
jednom ili vise puta.

do - while petlja

« Zarazliku od prethodne petlje koja je imala uslov na
svom pocetku, do-while petlja ima uslov na kraju. Prema
tome, telo petlje Ce se sigurno izvrsiti bar jednom.
do {

telo petlje
[1teracija]

} while (uslov);

i=1

do {
document.writeln (i) ;
i++; //i=1+1

} while (1<=10)

for petlja

« QOpsti oblik for petlje izgleda ovako:
for(inicijalizacija; uslov; iteracija) {

telo petlje;

for (1i=0; 1i<10; i++) {
document.writeln (1) ;

}

 Promenljiva i je privremena promenljiva,
a blok u kome je definisana je blok u kome se nalazi for
petlja.

break naredba

 BREAK se koristi za skok na kraj bloka koji je oznaCen labelom uz break ili
na kraj bloka u kome se break nalazi, ako break stoji bez labele.

» Labele, pomocu kojih se oznaCavaju blokovi, se formiraju kao i svi ostali
identifikatori s tim Sto iza njih mora stajati dvotaCka (:). Na primer, sledeci

kod:

a: |
b: |
c: |

document .writeln ("pre break-a"); //ovo se izvrsava!
break b;

document.writeln ("ovo nece biti prikazano"); //ovo se
ne izvrsava!

}

} // ovde izlazi iz bloka kada uradi break b!

document .writeln ("posle break-a"); //ovo se izvrsava!

return

e return se koristi za povratak iz funkcije na mesto poziva. Ukoliko

funkcija vra¢a neku vrednost tada return mora slediti izraz Ciji je tip

kompatibilan sa povratnim tipom funkcije. U suprotnom return izjava
moze stajati sama.

function kvadratBroja (x) {
return x * Xx;

}

x = kvadratBroja(d);

/* poziv funkcije */

document.write ("Kvadrat od 5 je " + x);
« Kao rezultat poziva funkcije dobija se:

Kvadrat od 5 je 25

continue

Prelaz na sledecu iteraciju petlje a da se deo koda pre njenog kraja
ne izvrsi. Za takve situacije se koristi continue.
for(i = 0; i < 10; 1i++) {
document.write(1 + " ");
if (1 % 2 == 0) continue; /*kada je broj paran
preskace sve naredbe
do kraja petlje */
document.writeln ("
");
}

ZahvaljujucCi continue naredbi nakon izvrsavanja ovog primera dobija se:
01
23
45
67
89

Specijalne naredbe

for .. In

|zvrSava iteraciju po specificnoj promenljivoj za svaku osobinu
(property) u okviru odrenenog objekta. Znaci za svaku definisanu
osobinu u oviru nekog objekta izvrsava se niz naredbi definisan u
okviru tela ove petlje. Primer:

niz = new Array ("Federer", "Djokovic", "Nadal")
for (var 1 in niz) {

document.write(niz[i] + "
");

function

» Deklarise JavaScript funkciju sa specificiranim
parameterrima. Tipovi podataka mogucih parametara
obuhvataju stringove, brojevi i objekte.

function ime ([paraml] [, param2] [...,paramN])

{

//izrazi

with

* Definise tip objekta za niz izraza. U okviru izraza
dodeljuje specifiche vrednosti za odredene osobine
objekta. Na primer, matematiCkim funkcijama mora
prethoditi objekat Math. Sledeci primer
podrazumeva Math ispred Pl, COS() | SIN():

var a, X, V;

var r=10;

with (Math) {
a =PI *r * r;
X = r * cos(PI);

y = r * sin(PI/2);

Metode objekta Math

* round(0.60)
 ceil(0.49)
 floor(-4.60)
* random()

* min(-3,2)
 max(b,7)

« sqrt(25)

« abs(-3)

* Pl E

* sIn(3.5), cos(2.7), tan(b)

NizovVi

Nizovi

« Sadrze skup podataka definisanih u jednoj
promenljivo.

* Da bi se kreirao niz koristi se objekat
Array().

* Poziva se konstruktor, specijalna tip
funkcije koja se koristi za kreiranje
instance promenljive i vraca referencu na
Kreiranu promenljivu.

Array()

* Niz se kreira pomocu recCi new | konstruktora Array()
na sledeci nacin:
var arrayName = new Arrav();
Il ovako Inicijalizovan elementima:

arrayObjectName = new Array (elementO,
elementl, ..., elementN):;

« Svaki podatak u nizu se naziva element.

Pozicija u nizu

Indeks je numeriCka pozicija u nizu.

Brojanje elemenata u okviru niza pocinje sa
Indeksom nula (0).

Pojedinacnom elementu se pristupa tako sto se
navodi njegov indeks u srednjim zagradama.

Dodeljivanje vrednosti pojedinacnhom clanu niza
se navodi vrsi isto kao kod promenljive, samo se
navodi | indeks elementa, na primer:

niz[3] = "IpP"

VeliCina niza se moze dinamicCki menjati.

Primer sa definisanjem niza (1)

var auto = new Array(); //definisanje niza
auto[0] = "Saab";

auto[l] = "Volvo";

auto[2] = "BMW";

for (1 = 0; 1 < auto.length; 1++)
{

document.write (auto[1] + " ") ;

Izlaz: Saab Volvo BMW

Primer sa definisanjem niza (2)

var auto = new Array(2); //niz od 2 elementa
auto[0] = "Fiat";

auto[1l] = "Peugeot";

auto[2] = "Citroen"; //niz ce da se prosiri
auto[3] = "Skoda"; //dinamicki

for (1 = 0; 1 < auto.length; 1++)
{

document.write (auto[1] + " ") ;

Izlaz: Fiat, Peugeot, Citroen, Skoda

Primer sa definisanjem niza (3)

var auto = new Array ("Volkswagen", "Ford",
"Mercedes"); //definisemo niz od 3 elementa

auto[l] = "Opel"; //menjamo drugi element niza
for (1 = 0; 1 < auto.length; 1++)

{

document.write (auto[1] + " ") ;

Izlaz: Volkswagen, Opel, Mercedes

Funkcija sort()

« Ova metoda ureduje (sortira) elemente niza direktno u
lzvornom nizu i vraca tako ureden niz.

« Kada se metoda sort() pozove bez argumenata,
sortira elemente niza po abecednom redosledu.

« Ako niz sadrzi nedefinisane elemente,
oni se stavljaju na kraj niza.
var niz = new Array("Marko", "Vesna", "Ana",
"Stefan", "Darija", "Ivan");
document.write(niz + "
")

document.write (niz.sort () + "
")

Izlaz:
Marko,Vesna, Ana, Stefan,Darija, Ivan
Ana,Darija, Ivan,Marko, Stefan,Vesna

Funkcija sort() po numerickom redu

« Da biste sortirali niz po redosledu koji nije abecedni, morate

metodi sort() proslediti kao argument neku funkciju za
poredenje.

function sortNumber (a, b) {

return a - b;

} //vraca vrednost <0, 0 ili >0, zavisno od redosleda

var numeric = new Arrayl[3, 44, 1111, 222];
document.write (numeric.sort () + "
");
document.write (numeric.sort (sortNumber)) ;

//prvo je abecedno, drugo numericko sortiranje!
Izlaz:

1111, 222, 3, 44
3, 44, 222, 1111

Funkcija reverse()

« (Ova metoda obrce redosled elemenata niza i vraca niz sa
obrnuto rasporedenim elementima. Da bi to uradila, ne pravi
novi niz s preuredenim elementima, veC menja redosled
direktno u postojecem nizu.

« a|0] postaje a[n], a[1] postaje a[n-1],...

var niz = new Arra ("Marko" "Vesna" "Ana"
y 4 4 4
"Stefan", "Dari '|a", "Ivan");

document.write (niz + "
")

document.write (niz.reverse () + "
")

Izlaz:

Marko,Vesna,Ana, Stefan,Darija, Ivan

Ivan,Darija, Stefan, Ana,Vesna,Marko

Funkcija concat()

« Metoda concat() pravi i vraca nov niz koji sadrzi elemente
Izvornog niza, s pridodatim argumentima te funkcije.

» Ako je neki od ovih argumenata niz, on se razlaze na svoje
elemente koji se zasebno pridodaju rezultujecem nizu.

var brojevi = [1,2,3];

brojevi.concat (4,5); //Rezultat: 1,2,3,4,5
brojevi.concat ([4,5]); //Rezultat: 1,2,3,4,5
brojevi.concat([4,5],1[6,7]); //Rezultat: 1,2,3,4,5,6,7
brojevi.concat (4, I[5,[6,7]1]); //Rezultat: 1,2,3,4,5,6,7

Funkcija join()

« Metoda join() konvertuje sve elemente niza u znakovne
nizove | nadovezuje ih.

» Ukoliko se ne navede nijedan granicnik u obliku znakovnog
niza, za razdvajanje se koristi zarez.

var brojevi = [1,2,3]; //Pravi novi niz sa ova 3 elem.
var s = brojevi.join();//Rezultat: s=1,2,3
s = brojevi.join(" | "); //Rezultat: s =1 | 2 | 3

s = brojevi.join ("#"); //Rezultat: s = 1#2#3

Funkcija slice()

* Metoda slice() vraca iseCak, odnosno podniz navedenog
niza. Ima dva argumenta koja odreduju pocetak i kraj iseCka
koji se dobija.

* Rezultujuci niz sadrzi element odreden prvim argumentom, i
sve naredne elemente sve do elementa (ali ne |1 njega)
odredenog drugim argumentom.

* Ako je naveden samo jedan argument, rezultujuci niz sadrzi
sve elemente pocCev od onog predvidenog tim argumentom,
do kraja niza. Ako je negativan, gleda se od poslednjeg.

var brojevi = [1,2,3,4,5];
brojevi.slice (0, 3); //Rezultat: 1,2,3
brojevi.slice(3); //Rezultat: 4,5

brojevi.slice (1, -1); //Rezultat: 2,3,4

Funkcije push() i pop()

Metode push() i pop() omogucavaju da se s nizovima radi
kao da su stekovi.

Metoda push() dodaje jedan ili viSe elemenata na kraj niza i
vraca novu duzinu niza.

Metoda pop() radi suprotno: brise poslednji element niza,
skracuje niz za jedan i vrac¢a uklonjenu vrednost.

Oba metoda menjaju izvorni niz umesto da prave izmenjenu
kopiju niza.

Primeri za stek

var stek = new Arrav(); //prazan stek[]

stek.push(1,2); //stek[1l,2] Rezultat je 2
stek.pop () ; //stek[1] Rezultat je 2
stek.push (3) ; //stek[1l, 3] Rezultat je 2
stek.pop () //stek[1] Rezultat je 3
stek.push ([4,5]); //stek [1,[4,5]] Rez. je 2
stek.pop () ; //stek[1] Rezutat je [4,5]

stek.pop () ; //stek][] Rezultat je 1

Funkcija toString()

* Nizovi imaju metodu toString(), koja konvertuje svaki
element niza u znakovni niz | kao rezultat prikazuje listu tako

dobijenih znakovnih nizova razdvojenih zarezima.

* Rezultat ne sadrzi uglaste zagrade ili bilo koju drugu vrstu
granicnika oko vrednosti iz niza.

 Primer:
[1,2,3].toString () //Rezultat je '1,2,3"
["a", "b", "c"].toString() //Rezultat je 'a,b,c’

[1, [2, 'c']l].toString() //Rezultat je '1,2,c'

Objekat Date

Date objekat

* Ovaj objekat se koristi kada je potrebno primeniti
odredene operacije u kojima se koriste vremenske
promenljive.

« Svaki datum koji se pojavi u okviru nekog JavaScript
programa se pamti kao broj koji predstavlja broj
milisekundi izmedu dobijenog datuma i ponoci
1. januara 1970. god. po UTC vremenu.

Na primer argument 5000 Ce kreirati datum koji
predstavlja 5 sekundi posle ponoci 1/1/1970.

Kreiranje Date objekta

« U programu kreiranje promenljive od ovog objekta se
postize na jedan od sledecih nacina:

dateObjectIme = new Date ()

dateObjectIme = new Date("month day, year
hours:minutes:seconds")

dateObjectIme = new Date(year, month, day)

dateObjectIme = new Date(year, month, day,
hours, minutes, seconds)

Primeri nekih datuma

today = new Date() //trenutno vreme 1 datum

birthday = new Date ("December 17, 1995
03:24:00")

birthday = new Date (95, 11, 17)

birthday = new Date (95, 11, 17, 3, 24, 0)

Metode sa datumom (1)

Date.parse(datum)

Ovaj metod vraca broj milisekundi do navedenog datuma po lokalnom vremenu (od
1.1.1970 00:00:00).

Primer: datum.setTime(Date.parse("Aug 9, 2005")

Date.UTC(gg,mm,dd [,hh][,mh][,sec])

Vraca broj milisekundi od 1.1.1970 00:00:00 do datuma, prema Universal Coordinate
Time (UCT).

Primer: gmtDatum = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

datum.getDate()

Ovaj metod vrac¢a dan u mesecu (1-31) za navedeni datum.

Primer: datum = new Date("December 25, 2001 23:15:00");

dan = datum.getDate()

Nakon izvrSavanja primera promenljiva dan dobija vrednost 25.

datum.getDay()

Metod vraca dan u nedelji (O-nedelja, 1-ponedeljak ... 6-subota) za navedeni datum.
Primer: datum = new Date("November 14, 2009 23:15:00");

dan = datum.getDay()

Nakon izvrSavanja primera promenljiva dan dobija vrednost 6, jer je 14.11.2009.god.,
bila subota.

Metode sa datumom (2)

datum.getHours()

Ovaj metod vraca sat za navedeni datum, moguce vrednosti su brojevi u opsegu od O
do 23.

Primer: datum = new Date("November 14, 2009 23:15:00");

sati = datum.getHours()

Nakon izvrSavanja primera promenljiva sati dobija vrednost 23.

datum.getMinutes()

Ovaj metod vraca minute za navedeni datum, moguce vrednosti su brojevi u opsegu
od 0 do 59.

Primer: datum = new Date("November 14, 2009 23:15:00");

minuti = datum.getMinutes()

Nakon izvrSavanja primera promenljiva minuti dobija vrednost 15.

datum.getMonth()

Ovaj metod vra¢a mesec za navedeni datum (0-januar, 1-februar, ... 11-decembar).
Primer: datum = new Date("November 14, 2009 23:15:00");

mesec = datum.getMonth()

Nakon izvrSavanja primera promenljiva mesec dobija vrednost 10 (jer je januar 0!!))

Metode sa datumom (3)

datum.getSeconds|()

Ovaj metod vraca sekunde za navedeni datum, moguce vrednosti su brojevi u
opsegu od 0 do 59.

Primer: datum = new Date("November 14, 2009 23:15:08");

sekunde = datum.getSeconds()

Nakon izvrSavanja primera promenljiva sekunde dobija vrednost 8.

datum.getTime()

Ovaj metod vraca vreme do navedenog datuma u milisekundama (od 1.1.1970
00:00:00).

Primer: datum = new Date("November 14, 2009 23:15:00");

proteklo = datum.getTime()

Nakon izvrSavanja primera promenljiva proteklo dobija vrednost koja odgovara broju
milisekundi od 1.1.1970 00:00:00 do 14.11.2009. 23:15:00.

datum.getTimezoneOffset()

Ovaj metod vraca razliku lokalnog vremena i GMT u minutama.
Primer: datum = new Date();

razlikaSati = datum.getTimezoneOffset() / 60

Nakon izvrSavanja primera promenljiva razlikaSati dobija vrednost -1.

Metode sa datumom (4)

datum.getFullYear()

Ovaj metod vraca godinu iz navedenog datuma (4 cifre).

Primer: datum = new Date("November 14, 2009 23:15:00");

godina = datum.getYear()

Nakon izvrSavanja primera promenljiva godina dobija vrednost 2009.

datum.setDate(brojDana)

Ovaj metod postavlja dan u mesecu za navedeni datum.

Argument metoda je broj u opsegu od 1 do 31.

Primer: datum = new Date("July 27, 1960 23:30:00");

datum.setDate(24)

Nakon izvrSavanja primera promenljiva datum dobija vrednost 24.7.1960 23:30:00.

datum.setMonth(brojMeseca)

Ova metoda postavlja mesec za navedeni datum.

Argument je broj od 0 do 11 (O-januar, 1-februar, ...)

Primer: datum = new Date ("July 27, 1960 23:30:00");

datum.setMonth(1)

Nakon izvrSavanja primera promenljiva datum dobija vrednost 24.2.1960 23:30:00.

Metode sa datumom (5)

 datum.setHours(brojSata)
Ovaj metod postavlja broj sati za navedeni datum.
Argument metoda je broj u opsegu od 0 do 23.
Primer: datum = new Date("July 27, 1960 23:30:00");
datum.setHours(7)
Nakon izvrSavanja primera promenljiva datum dobija vrednost 27.7.1960 07:30:00.

« datum.setMinutes(brojMinuta)
Ovaj metod postavlja broj minuta za navedeni datum.
Argument metoda je broj u opsegu od 0 do 59.
Primer: datum = new Date("July 27, 1960 23:30:00");
datum.setMinutes(35)
Nakon izvrSavanja primera promenljiva datum dobija vrednost 27.7.1960 23:35:00.

« datum.setSeconds(brojSekundi)
Ovaj metod postavlja dan u mesecu za navedeni datum.
Argument metoda je broj u opsegu od 0 do 59.
Primer: datum = new Date("July 27, 1960 23:30:00");
datum.setSeconds(35)
Nakon izvrSavanja primera promenljiva datum dobija vrednost 27.7.1960 23:30:35.

Metode sa datumom (6)

datum.setFullYear(brojGodine)

Ovaj metod postavlja godinu za navedeni datum.

Argument metoda je broj u opsegu od 0 do 9999.

datum = new Date("July 27, 1999 23:30:00");

datum.setYear(2017)

Nakon izvrSsavanja primera promenljiva datum dobija vrednost 27.7.2017 23:30:00.

datum.setTime(vreme)
Ovaj metod definiSe novi datum. Argument metoda je broj milisekundi od 1.1.1970
00:00:00

datum.toGMTString()

Ovaj metod vrsi konverziju datuma u GMT string iz lokalne vremenske zone.
Primer: datum = new Date("December 25, 2001 23:15:00");
datum.toGMTString()

Nakon izvrSavanja primera promenljiva datum dobija vrednost "Tue, 25 Dec 2001
22:15:00 UTC”

datum.toLocaleString()

Ovaj metod vrsi konverziju datuma u lokalni datum string iz GMT.

Primer: datum.toLocaleString()

Nakon izvrSavanja primera promenljiva datum dobija vrednost u zavisnosti od
podesSavanja racunara na kome se pokrece.

String objekat

Sta je String?

« Ovaj objekat se koristi da bi se efikasnije obradio niz
karaktera, Sto objekat tipa Sting u sustini i jeste.
U okviru JavaScript jezika String se defnise kao niz
karaktera izmedu apostrofa ili izmedu dvostrukih
navodnika: "neki String" ili 'neki String'. | u okviru ovog

objekta postoje dostupni metodi koji se mogu Kkoristiti.

escape ("string")

* Ova funkcija kao rezultat vraca ASCI| kodove
karaktera u okviru argumenta.

Primer:
y = escape ("!#")

« Nakon izvrsavanja primera promenljiva y dobija
vrednost "%21%23", jer su ASCII kodovi za
simbole i1 # 211 23.

eval ("izraz")

* Ova funkcija izraCunava vrednost izraza koji je
definisan kao argument funkcije.

Primer:
var x = eval ("4+5-8")

Nakon izvrsavanja primera promenljiva x dobija
vrednost 1.

linkTekst.link(linkURL)

« Ovaj metod kreira tekst linkTekst koji predstavlja HTML

link na neku drugu stranicu, Ciji je adresa definisana sa
argumentom linkURL (dejstvo kao | HTML taga). Primer:

var naziv = "ETF sajt";

var URL = "http://www.etf.rs";
document.write ("Ovo jJje " + naziv.link (URL))

« Nakon izvrSavanja primera na stranici ¢e se pojaviti tekst
"Ovo je ETF sajt”, koji Ce predstavljati vezu ka stranici
www.etf.rs.

parselnt(StringBroj [,osnoval)

« Ova funkcija kao rezultat vraca ceo broj dobijen
konverzijom argumenta stringBroj koji je tipa String u
brojnom sistemu sa osnovom koju definiSe argument
osnova.

« QOvaj argument je opcioni | ako se ne navede
podrazumeva se osnova 10, tj. dekadni brojni sistem.
Primer:

X = parseInt("17", 8);
y = parselInt ("15", 10);

Nakon izvrsavanja primera i promenljiva x i promenljiva y
dobija vrednost 15.

string.big()

Ovaj metod prikazuje string sa uvecanim slovima (veca
veliCina i boldovan font).

Primer:
"Dobar dan!".big();

string.bold()

Ovaj metod prikazuje podebljan string (ima isto dejstvo
kao HTML tag).

Primer:
"Dobar dan!".bold();

string.italics()

Ovaj metod prikazuje string kurziv stilom (ima isto
dejstvo kao HTML tag <i>).

Primer:

"Dobar dan!".italics () ;

string.fontcolor()

Ovaj metod prikazuje string u odredenoj boji (ima isto
dejstvo kao HTML tag).

Primer:

"Dobar dan!".fontcolor ("blue");

string.fontsize()

Ovaj metod prikazuje string u odredenoj veliCini (ima isto
dejstvo kao HTML tag).

Primer:

"Dobar dan!".fontsize(7);

string.charAt(broj)

« QOvaj metod kao rezultat vraca znak na navedenoj
poziciji. Pozicije unutar stringa se racunaju sa leve na
desnu stranu i prva pozicija ima indeks 0. U okviru
svakog objekta tipa String postoji | osobina (property)
length koja je jednaka broju karaktera u posmatranom
stringu. Koriscenjem ovog podatka moze se odrediti |
Indeks poslednjeg karakera u stringu, a to je vrednost
string.length-1. Primer:

x= "Dobar dan!".charAt (4);
y= "Dobar dan!".charAt (o)

Nakon izvrsavanja primera promenljiva x dobija vrednost
'r’, apromenljivayje 'd.

string.indexOf(traziString, [odPozicijel)

« Ovaj metod vraca broj pozicije na kojoj je prvi put
pronaden argument tipa String traziString.
U sluCaju da se trazeni string ne nalazi u poCetnom
stringu kao rezultat se vraca vrednost -1. Ako postoji |
drugi argument odPozicije, tada Ce se pretraga izvrSavati
od zadate pozicije. Primer:

X ="Dobar dan!".indexOf ("r")

y ="Dobar dan!".indexOf ("a", 4)

Nakon izvrsavanja primera promenljiva x dobija vrednost
4, a promenljivay je 7.

string.lastindexOf(traziString,[doPozicije])

« Ovaj metod vraca broj pozicije na kojoj se poslednji put
pojavljuje argument tipa String traziString. U sluCaju da
se trazeni string ne nalazi u pocetnom stringu kao
rezultat se vraca vrednost -1. Ako postoji | drugi
argument doPozicije, tada Ce se pretraga izvrsavati do
zadate pozicije. Primer:

X = "Dobar dan!".lastIndexOf ("a")

y = "Dobar dan!".lastIndexOf ("a", 6)

Nakon izvrSavanja primera promenljiva x dobija vrednost
7, Jer Je to poslednje pojavljivanje stringa "a", a
promenljiva y je 3, jer je to poslednje pojavljivanje stringa
"a" do pozicji 6.

string.strike()

Ovaj metod prikazuje string koji je precrtan (ima isto
dejstvo kao HTML tag <strike>).

Primer:

"Dobar dan!".strike () ;

string.sub()

« Ovaj metod prikazuje string koji je prikazan kao indeks
(ima isto dejstvo kao HTML tag <sub>).

e Primer:
"Zdravo".sub () ;

string.sup()

Ovaj metod prikazuje string koji je prikazan kao
eksponent (ima isto dejstvo kao HTML tag <sup>).
Primer:

"Zdravo".sup () ;

string.substring(prvi, poslednji)

« Ovaj metod vraca deo stringa pocCev od pozicije prvi do
pozicije posledniji, tj. uzima redom karaktere na
pozicijama prvi, prvi + 1, prvi + 2, ..., poslednji -2,
poslednji — 1.

x = "Dobar dan!".substring(6,9)

« Nakon izvrSavanja primera promenljiva x dobija vrednost
"dan", jer su to karakteri na pozicijama 6, 7 i 8.

substring |1 substr - razlike

Razlikuju se u drugom argumentu!
substring (prvi_karakter, poslednji_karakter)

x = "Internet".substring (1, 3)

Ova funkcija vraca: nt

substr (prvi_karakter, duzina)
y = "Internet".substr (1, 3)

Ova funkcija vraca: nte

string.toLowerCase()

* Ovaj metod izvrSi konverzija svih karaktera u
okviru stringa u mala slova. Primer:

x = "Dobar dan!".toLowerCase ()

« Nakon izvrsavanja primera promenljiva x dobija
vrednost "dobar dan!”, jer je izvrsena konverzija
svih karaktera u mala slova.

string.toUpperCase()

* Ovaj metod izvrSi konverzija svih karaktera u
okviru stringa u velika slova. Primer:

x = "Dobar dan!".toUpperCase ()

« Nakon izvrsavanja primera promenljiva x dobija
vrednost "DOBAR DAN!" jer je izvrSena
konverzija svih karaktera u velika slova.

unescape("kodovi")

* Ova funkcija kao rezultat vraca ASCII| znakove
navedenih kodova u okviru argumenta funkcije.
Primer:

X = unescape ("%21%23")

« Nakon izvrsavanja primera promenljiva x dobija
vrednost /"1#"/, jer su simboli ! | # kodovani sa
ASCII kodovima 211 23.

Rad sa uzorcima

Pattern Matching

Definisanje uzorka (1)

« JavaScript funkcije se Cesto upotrebljavaju za proveru
unetih podataka od strane klijenta.

JavaScript ima razvijenu podrsku za razne vrste provera i
one se obavljaju na klijentskoj strani.

« Uzorak se joS naziva i regularni izraz (regular
expression) i moze se definisati na dva nacina:
— var 1me uzorka = new RegExp ("primer")
— var ime uzorka = /primer/

* Na oba nacina se formira objekat uzorka koji se naziva
ime uzorka | kome odgovara svaki string koji u sebi

sadrzi podstring primer.

Definisanje uzorka (2)

— var uzorak = new RegkExp ("HTML")
— var uzorak = /HTML/

* Prvim se poziva RegExp konstruktor, a u drugom se
sadrzaj uzorka pise izmedu pocetnog i krajnjeg znaka /
(slash)

— var uzorak = new RegExp ("s$")

— var uzorak = /sS/

« Simbol $ oznaCava kraj stringa. Sada promenljiva uzorak
odgovara bilo kom stringu koji se zavrsava sa s.

Karakteri koji se koriste u uzorku

alfanumericki znak sebe

\d Bilo koja cifra od 0 do 9
\D Bilo koji karakter koji nije cifra
\w Bilo koji karakter (slova a-z, A-Z, 0-91)
\W Neki specijalni karakteri (na primer: @)
\s Neki beli karakter (tab, nova linija, ...)
\S Neki karakter koji nije beli
Bilo koji karakter (osim nove linije)
[...] Bilo koji karakter naveden izmedu []
["...] Bilo koji karakter koji nije naveden izmedu []

[\b] Brisanje unazad

{n,m}

{n,}
{n}

Znakovi za ponavljanje

Prethodni element se ponavlja najmanje n puta i
ne vise od m puta

Prethodni element se ponavlja n ili viSe puta
Prethodni element se ponavlja TACNO n puta

Prethodni element se ne pojavljuje ili se pojavljuje
samo jednom. Ekvivalentno izrazu {0,1}

Prethodni element se ponavlja jednom ili vise puta.
Ekvivalentno izrazu {1, }

Prethodni element se ne pojavljuje ili se ponavlja
vise puta. Ekvivalentno izrazu {0,}

Primeri (1)
« /[abc]/

— predstavlja jedno pojavljivanje slova a ili slova
b ili slova c. String "c" ispunjava uslove
definisane uzorkom, ali string "s" ne ispunjava
definisane uslove.

« /"~ [abc]/

— predstavlja karakter koji nije slovo a ili slovo b
1l slovo c

Primeri (2)

* Primer za petocifreni postanski broj
— /\d\d\d\d\d/
- /\d{5}/
« /\d{2,4}/
— uzorak koji oznacava 2, 3 ili 4 pojavljivanja
cifara
o /\w{3}\d?/
— uzorak koji oznacCava tacno 3 pojavljivanja
slova i opciono jedne cifre
— primer: web8, ana, iva

Primeri (3)

e /\s+Internet\s+/

— uzorak koji oznacava string "Internet" sa
jednim ili vise prostora pre ili posle stringa.
e /[a—-z]+\d+/

— uzorak koji oznacava jedno ili viSe malih slova
pracenih jednom ili vise cifara.

Znakovi za alternativu, grupisanje |
sidrenje

Alternative. Pojavljuje se ili samo desni ili
samo levi deo uzorka u stringu.

(...) Grupisanje simbola u jedan objekat nad
kojim se mogu koristiti *, +, ?, |

A Pretragu uzorka na pocCetku znakovnog niza

$ Pretragu uzorka na kraju znakovnog niza

Primeri (4)

e /ab|cd]|ef/
— uzorak koji oznacava pojavljivanje ab ili cd ili ef
* /\NA{3} | [A-2] {4}/

— uzorak koji oznaCava pojavljivanje 3 cifre ili 4
velika slova

e /Java (script)/

— uzorak koji oznacava pojavljivanje stringa
"Java" ili stringa "javascript"

Primeri (5)

e /(ablcd)+|ef/
— uzorak koji oznacCava pojavljivanje stringa "ef"
— ili pojavljivanje jednom ili vise puta stringa "ab"
— ili pojavljivanje jednom ili vise puta stringa "cd"

Atributi

case-insensitive ispitivanje

globalno izvrSavanje (pronalazenje svih
pojavljivanja definisanog uzorka)

rad sa vise linija

Ispitivanje uzoraka pomocu metoda

search () - trazi odredeni uzorak u tekstu
replace () - trazi odredeni uzotak u tekstu |
zamenjuje ga nekim stringom

match () - formira niz koji sadrzi samo trazeni
uzorak

split () - deli string odredenim uzorkom
(uzorak je kao separator)

search() metod

Ispituje da li u stringu postoji definisani uzorak

Rezultat je pozicija prvog pojavljivanja uzorka ili -1, ako
ne pronade uzorak

Primerl:

x = /Script/1i

y = "JavaScript".search (x);

Kao rezultat izvrsavanja ovog primera

promenljiva y Ce dobiti vrednost 4

Ovaj metod ne podrzava globalnu pretragu, tj. ignorise
upotrebu atributa g u okviru definicije uzorka

replace() metod

Ispituje da li u stringu postoji uzorak | ako postoji zameni
uzorak unutar stringa nekim drugim stringom

Metod ima dva argumenta, prvi je uzorak, a drugi je
string koji treba da zameni uzorak

Primer2:

"html: HTML se uci na IP".replace (/HTML/,"JAVA")
Ovaj metod podrzava globalnu primenu, pa ako se u

okviru uzorka navede i g atribut, ovaj metod Ce izvrsiti
zamenu svakog uzorka koji pronade u okviru stringa

match() metod

* Vrlo slican search() metodu, samo umesto pozicije vraca
niz elemenata sa svim pojavljivanjima definisanog
uzorka, ako je definisan atribut g.

* Primer:

— "1 plus 2 jednako je 3".match (/\d+/g)
— Rezultat:

["1", "2", "3"], jer je uzorak definisan kao pojavljivanje cifre,
jednom ili viSe puta, u celom stringu

split() metod

Ima jedan argument - uzorak!

Rezultat je niz koji se dobija kada se string podel
argumentom (uzorkom) kao separatorom

Primer:
- "123, 456, 2009 , 31417 .split (/\s*,\s*/)
— Rezultat je ['123", "456", "2009", "3141"],

jer je uzorak definisan sa odredenim brojem blanko znakova pre
| posle zareza, ukljuCujuci zarez

Metodi objekta RegEXxp

e exec ()
e test ()

exec()

* Ovaj metod je slican string metodu match(). Razlika je u
tome sto kod ovog metoda argument je string, a
primenjuje se na uzorku, dok je kod match() obrnuto.

* Rezultat izvrsavanja exec() je niz koji sadrzi rezultate
Ispitivanja, definisane na isti naCin kao i metod match().

« Zarazliku od match() metoda exec() vraca isti rezultat
ako postoji atribut g i ako ne postoji.

lastindex

« Ako se metodi exec() prosledi regularni izraz sa
Indikatorom g, u svojstvo lastindex objekta klase Regex
upisuje se pozicija prvog znaka posle odgovarajuceg
podniza.

« Kada se metoda exec() ponovo pozove za isti regularni
izraz, pocCinje pretrazivanje od pozicije zadate vrednoscu
svojstva lastindex.

« Ovo ponasanje omogucava da ponovljene pozive
metode exec() izvrsavamo kroz petlju, kako bi se
pristupilo svim podnizovima u znakovnom nizu
podudarnim sa regularnim izrazom.

Primer

var pattern = /Java/g;
var text = "JavaScript je mnogo zabavniji nego
Javal";

var result;

while ((result = pattern.exec(text)) != null)
{
alert ("Pronadjen '" 4+ result[0] + "'" +
" na poziciji " + result.index +";
sledeca pretraga pocinje od " +

pattern.lastIndex);

test()

« Ova metoda se ponasa kao exec() tj. vraca vrednost
true, ako njen rezultat nije null.

* Pocinje da pretrazuje znakovni niz pocCevsi od pozicije
zadate svojstvom lastindex (isto kao exec()!!!) i ako nade
odgovarajuci podniz, zadaje tom svojstvu vrednost
pozicije prvog znaka neposredno posle nadenog
podniza.

« Svojstvo lastindex postoji samo ako regularni izraz ima
iIndikator g, u suprotnom metode exec() I test()
zanemaruju svojstvo lastindex bez indikatora g.

JavaScript | forme

Rad sa dogadajima

Rad sa vise prozora

Cookie

Rad sa pauzama i intervalima

HTML | JavaScript

* Programski jezik JavaScript je svoju
popularnost stekao mogucnoscu da pristupa
elementima forme, Cita njihove vrednosti, obraduje
ih i definise nove vrednosti elemenata.
Takode iskoris¢ena je i osobina HTML jezika da
prepozna korisnikovu akciju | reaguje na nju.

- Cita¢ moze da prepozna svaku akciju korisnika, bilo
da ona potice od misa ili tastature.

blur

click
change
focus
load
mouseover
mouseout
select
submit
unload
reset
error
abort

Rad sa dogadajima

izade iz fokusa elementa forme

klikne na element forme ili link

promeni vrednost izabranog elementa forme
ude u fokus nekog elementa forme

ucita stranicu u browser

prede pokazivacem misa preko linka

izade pokazivaCem miSa sa odredene povrsine ili linka
izabere polje elementa forme

izvrSi slanje forme

napusti stranicu

resetuje sadrzaj forme

dobije gresku prilikom ucitavanja slike ili stranice

prekine ucCitavanje slike ili stranice

onBlur
onClick
onChange
onFocus
onLoad
onMouseQver
onMouseQOut
onSelect
onSubmit
onUnload
onReset
onError
onAbort

Primer - Dogadaji misa

* Napisati JavaScript program koji registruje:
— prelazak pokazivaca misa preko linka,
— odlazak pokazivaca misa sa nekog linka,

— broj prelazaka pokazivaca misa preko nekog dugmeta
(realizovati JS funkcijom),

— dvostruki klik misa koji ce zatvoriti prozor.

Primer - Dogadaji misa (1)

<script language="JavaScript">
var counter=0;
function closeWindow () {
alert ("Gotovo je!");
window.close () ;

}

function mouseOverCounter () {

counter++;
if (counter==1) {
alert (counter + " prelazak preko dugmeta!");
}
else(
alert (counter + " prelaska preko dugmeta!");

}
</script>

Primer - Dogadaji misa (2)

<body onDblClick=" closeWindow()";>

<p>Dva puta kliknite da bi ste
zatvorili prozor!

<p>Registruje se prelazak misa preko linka.

<a href="#"
onMouseOver="alert ('Dogadjaj:onMouseOver') ; ">onMouseOver

<p>Registruje se odlazak misa sa linka.<a href="#"
onMouseOut="alert ('Dogadja:onMouseQut"') ; ">onMouseOut

<p>Kada se mis pozicionira na dugme 1 pomeril poziva se
funkcija
koja broji koliko puta se desio ovakav dogadjaj.

<form>

<input type="button" wvalue="onMouseMove"
onMouseMove="mouseOverCounter () ;">
</form>

</body>

Vrednostl elementa forme

« JavaScript moze i da procita vrednost proizvoljnog
elementa forme. Vrednosti elementa forme se prilazi u
opstem slucCaju na sledeci nacin:
document.imeForme.imeElementa.value

gde je document sluzbena rec,

ImeForme ime forme u okviru koje se nalazi element,
Cijoj se vrednosti pristupa,

ImeElementa ime elementa (name ili id) |

value sluzbena reC za vrednost tog elementa.

Primer - Sabiranje dva broja

« Napisati JavaScript program kojim mozete da unesete
dva broja u dva tekstualna polja, a zatim klikom na
dugme "SABERI” JavaScript funkcija izraCuna zbir ta dva
broja i taj rezultat ispise u trecem tekstualnom polju.

Primer - Sabiranje dva broja (1)

<SCRIPT LANGUAGE="JavaScript">

function Saberi () {
var brl = document.mojaforma.X.value - 0;
var br2 = document.mojaforma.Y.value - 0;

var ukupno = brl + br2;

//sabiranje brl + br2

// 1 smestanje rezultata u promenljivu ukupno
document.mojaforma.zbir.value = ukupno;

¥
</SCRIPT>

Primer - Sabiranje dva broja (2)

<FORM METHOD="post" NAME="mojaforma'">

X =
<INPUT TYPE="text" NAME="X" SIZE=5>

Y =

<INPUT TYPE="text" NAME="Y" SIZE=5>

<INPUT TYPE="button" VALUE="SABERI" NAME="dugme"
onClick="Saberi () ">

<hr>

REZULTAT =

<INPUT TYPE="text" NAME="zbir" SIZE=5>

</FORM>

Rad sa vise prozora

« JavaScript omogucava da se iz jednog prozora formira,
kontrolise ili menja sadrzaj u okviru drugog prozora.

Poruke upozorenja (alerti)

« Alerti se koriste unutar HTML stranice kada se zeli prikazati
odredeno obavestenje - novi manji prozor

<form action="">
<input type="button" wvalue="Pritisni me" onClick="alert ()" />
</form>

<script type="javascript">

function alert ()

{

alert ("Prvi red "+"i ovde je prvi red - \n Drugi red!");

}
</script>

» U okviru alerta koriS¢ena je oznaka za prelazak
u novi red : "\n"

window

* U ovaj objekat su ukljuene window metode za manipulaciju sa istim
« window.open () otvara novi prozor pretrazivaca

— WindowName=window.open ("URL", "WindowName", "Feature List");

WindowName je promenljiva. Koriste¢i ovu promenljivu mozemo pozivati funkcije
ili pristupati elementima istog

— "URL” je url za novi prozor. Ako je prazan nista nece biti ucitano.
— "WindowName” je ime prozora koje se koristi pri pozivu nekih funkcija

— "Feature List" je opcioni parametar. Cuva listu parametara odvojenih
zarezima.

» Ovaj metod uljuCuje width, height, zatim nekoliko veliCina koje mogu biti
yes(1) ilino(0)
 toolbar, location, directories, status, menubar, scrollbars, resizable.

e SmallWin = window.open("","small",
"width=100, height=120, toolbar=0, status=0") ;

Primer - Novi prozor (1)

<script language="javascript">

function prozor(page, width, height, top, left) {

var yes = 1;
var no = 0;
var menubar = no;
var scrollbars = no;
var locationbar = no;
var directories = no;
var resizable = no;
var statusbar = no;
var toolbar = yes;

features = "" +
"width=" + width + "," +
"height=" + height + "," +
"top=" + top + "," +
"left=" + left + "";

Primer - Novi prozor (2)

features += "" +
menubar ? ",menubars" : "") +
scrollbars ? ",scrollbars"™ : "") +

locationbar ? ",location”™ : "") +

(
(
(
(directories ? ",directories" : "") +
(resizable ? ",resizable" : "") +
(statusbar ? ",status" : "") +
(toolbar ? ",toolbar™ : "");

var reftt = window.open(page, 'fullPopup', features);

}
</script>

KolaciCl

« Kolaci¢ (Cookie) je mali imenovani segment podataka
koji Web CitaC pamti | koji je povezan sa odredenom
Web stranom ili Web lokacijom.

« QObiCno se koristi da bi se podaci uneti na jednoj strani
koristili na drugoj, tj. da bi CitaC mogao da ponovi
korisniCke parametre ili druge promenljive stanja kada
korisnik napusti stranu i kasnije se vrati.

« U JS se koristi svojstvo cookie objekta tipa Document

Cookie

« Format koji cookie fajl mora da zadovolji je:
Ime = vrednost [;EXPIRES=datum] [;DOMAIN=imeDomena]
[;PATH=putanja] [;SECURE]

— ime - ime koje definiSe upisani cookie;

— vrednost - informacija koja se Zeli zapamtiti;

— datum - datum koji definiSe do kada cookie ostaje upisan na
klijentskoj masini;

— imeDomena - definiSe jedini domen sa kog cookie moze da se Cita |
da mu se menja vrednost;

— putanja - definiSe jedinu putanju sa koje cookie moze da se Cita i da
mu se menja vrednost;

— SECURE - upis i Citanje cookie se izvrSava preko posebnih,
bezbednijih linija;

— Opcije EXPIRES, DOMAIN, PATH, SECURE su opcione i nije bitan
redosled u kom se pojavljuju;

Cookie

Citanje vrednosti:
var citamCookie = document.cookie

Upis na klijentskoj strani:

document.cookie = "primerCookie=" +
vrednostKojuPamtim + ";secure"

Cookie

<html>
<head>
<script language="javascript">
function postavljanjeCookie () {
document.cookie = 'Cookie je='+document.formal.imeCookie.value;
}
function prikazCookie () {
alert (document.cookie);
}
</script>
</head>
<body>
<hl>Cookie 1</hl>
<h2>Postavljanje 1 pregled cookie</h2>
<form name="formal">

<p>
<input name="imeCookie" type="text" id="imeCookie" size="20">
</p>
<p>
<input type="button" value="Upisite ime" name="B1l"
onClick="postavljanjeCookie () ">

<input type="button" wvalue="Prikazi cookie" name="B2"
onClick="prikazCookie()">

</p>
</form>
</body>
</html>

Rad sa pauzama I intervalima

« Koris¢enjem metoda objekta Window moze se
realizovati kod koji izvrSava automatski.

setTimeout()

— Koristi se u okviru JavaScript-a za izvrsavanje
odredenog koda nakon specificiranog vremenskog
intervala;

— Kod koji se definiSe u okviru setTimeout() metoda,
IzvrSava se samo jednom;

« Sintaksa upotrebe setTimeout() metoda:

var varlable = setTimeout ("funkcijal()",
brojMiliSekundi) ;

clearTimeout ()

* Metod se koristi da bi se prekinuo metod
setTimeout() pre nego sto se izvrsi

« clearTimeout() sadrzi jedan argument:

— Promenljivu koja predstavlja poziv metoda setTimeout()

* Druga dva metoda JavaScripta ko
automatski izvrsavaju odredeni kod su:

— setinterval() metod

— clearinterval() metod

setinterval()

 setinterval():

— slican metodu setTimeout(),
OSIM sto ponavlja izvrSavanje istog koda!

clearinterval()

 clearinterval():

— Koristi se da bi prekinuo izvrsavanje metoda
setinterval() na isti nacCin kao sto metod clearTimeout()
poniStava poziv metoda setTimeout().

Objekat History

« U okviru web CitaCca odrzava se interna lista
(poznata pod imenom history list) svin dokumenata
koji su bili otvarani tokom trenutne sesije Web

citaca.

« Svaki prozor Web Citaca i frejm sadrze svoj
sopstveni objekat History, koji predstavlja internu
listu dokumenata.

URL | History

« U okviru history list ne mogu se videti poseceni
URL-ovi,

ali se moze napisati script koji koristeci ovu listu
prolazi kroz Web stranice koje su bile otvarane
tokom sesije Web Citaca.

Neka ogranicenja

* U okviru Internet Explorera, moze se koristiti
JavaScript kod da bi se pretrazivala history list

— Jedino ako se trenutna Web page stranica nalazi na
istom domenu kao i Web stranica koja sadrzi JavaScript
kod koji pokusava da pretrazi listu

Objekat Location

Dozvoljava da se promeni adresa nove Web
stranice pomocu JavaScript koda

Jedan razlog za ovu promenu je i mogucnost

— Da se izvrsi redirekcija korisnika stranice na drugu
stranicu ili drugi URL

Kada se koristi metod ili property objekta Location
mora se

— Ukljuciti i referenca na sam Location objekat

Objekat Navigator

Koristi se da bi se dobile informacije o trenutnom
Web cCitacCu.

Netscape I Internet Explorer sadrze jedinstvene
metode | properties objekta Navigator koje se ne
mogu Koristiti sa ostalim cCitaCima.

Najvise se koriste metodi pomocu kojih se
prepoznaje tip web Citaca koji se koristi.

Frame | Target

 Atribut Target definise koji frejm ili prozor
Web Citaca Ce prikazati dokument:

— Bazira se na vrednosti prikazanoj u okviru target atributa
<a> elementa ili vrednosti u okviru atributa name

<frame> elementa

<base>
 Atribut target se koristi | sa <base> elementom

— da specificira default target za sve linkove u okviru
dokumenta

 Koristi data imena prozora ili frejma

« JavaScript, David Flanagan, O'Reilly, 2006.

